Veeder-Root TLS-3XX Consoles
Gilbarco EMC Series Consoles
ProPlus/ProMax Series Consoles

Site Prep and Installation Manual
Notice

Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be modified or translated to another language without the prior written consent of Veeder-Root.

Contact TLS Systems Technical Support for additional troubleshooting information at 800-323-1799.

DAMAGE CLAIMS / LOST EQUIPMENT

Thoroughly examine all components and units as soon as they are received. If any cartons are damaged or missing, write a complete and detailed description of the damage or shortage on the face of the freight bill. The carrier’s agent must verify the inspection and sign the description. Refuse only the damaged product, not the entire shipment.

Veeder-Root must be notified of any damages and/or shortages within 30 days of receipt of the shipment, as stated in our Terms and Conditions.

VEEDER-ROOT’S PREFERRED CARRIER

1. Contact Veeder-Root Customer Service at 800-873-3313 with the specific part numbers and quantities that were missing or received damaged.
2. Fax signed Bill of Lading (BOL) to Veeder-Root Customer Service at 800-234-5350.
3. Veeder-Root will file the claim with the carrier and replace the damaged/missing product at no charge to the customer. Customer Service will work with production facility to have the replacement product shipped as soon as possible.

CUSTOMER’S PREFERRED CARRIER

1. It is the customer’s responsibility to file a claim with their carrier.
2. Customer may submit a replacement purchase order. Customer is responsible for all charges and freight associated with replacement order. Customer Service will work with production facility to have the replacement product shipped as soon as possible.
3. If “lost” equipment is delivered at a later date and is not needed, Veeder-Root will allow a Return to Stock without a restocking fee.
4. Veeder-Root will NOT be responsible for any compensation when a customer chooses their own carrier.

RETURN SHIPPING

For the parts return procedure, please follow the appropriate instructions in the “General Returned Goods Policy” pages in the “Policies and Literature” section of the Veeder-Root North American Environmental Products price list. Veeder-Root will not accept any return product without a Return Goods Authorization (RGA) number clearly printed on the outside of the package.

©Veeder-Root 2017. All rights reserved.
Table of Contents

Introduction
- Fixed-Feature Consoles ... 1
- Modular Consoles .. 1
- Contractor Certification Requirements .. 1
- Related Documents ... 2
- Documents Required to Install Equipment ... 2
- Related Documents ... 2
- Safety Precautions ... 3
- National Electrical Code Compliance .. 3
- Probe- and Sensor-to-Console Wiring .. 3
- Power Wiring ... 4
- Sensor and Probe Junction Boxes ... 4
- Permissible Console Input/Output Connections 5
- TLS-300/ProPlus/EMC Basic Consoles ... 5
- TLS-350/ProMax/EMC Consoles ... 6

Planning Probe and Sensor Installations .. 7

Console Installation
- Locating the Console ... 10
- Mounting the Console ... 10
- Wiring the Console ... 13
- Checking the ground connection ... 14
- Wiring Conduit Safety Issues .. 15

Determining Mag Probe Riser Size
- Probe Riser Pipe Installation ... 16

Determining Mag Probe Length
- Determining Mag Probe Length .. 17
- Determining Mag Probe Length for Installation in a Vapor Extractor Riser .. 17
- Determining Mag Probe Length for Media-Isolated Installations 18

Special Mag Probe Installation Kits
- AST Installation Kit .. 19
- Vapor Extraction Riser Kit w/ Coupling Adaptor 20
- Vapor Extraction Riser Kit w/o Coupling Adaptor 21
- Chem-ISO kit ... 22
- LPG-ISO kit .. 23
- Riser Cap Kit for Mag Probe Installations .. 24
 - Cap and Cord Grip Kit ... 24
 - Metal Cap and Ring Kit ... 24

Mag Probe Installation
- UST/AST Tank - Dedicated Riser ... 26
- UST Riser Cap Attachment ... 26
- AST Riser Cap Attachment ... 28
- UST Installation - Vapor Extractor Riser w/ Coupling Adaptor 28
- UST Installation - Vapor Extractor Riser w/o Coupling Adaptor 30
- Installing a Chem-ISO Mag Probe ... 31
 - Before You Begin .. 31
 - Attaching the float to the tube .. 32
Appendix A: Wiring Record

Wiring Record .. A-1
Module Position ... A-1
Module Type .. A-1
Probe/Sensor Identification ... A-1
Terminal Identification ... A-1
Color Code or Marking .. A-1

Appendix B: Universal Sensor Mounting Kit

Introduction ... B-1
Product Description ... B-1
Kit Contents ... B-1
Mounting Sensors .. B-1

Figures

Figure 1. Permissible Inputs/Outputs by Area - TLS-300/ProPlus/EMC Basic Console 5
Figure 2. TLS-350 Series/ProMax/EMC Consoles - Plug-in Module Compartments 6
Figure 3. TLS-300/ProPlus/EMC Basic Typical Site/Forecourt Layout............................ 8
Figure 4. TLS-350/ProMax/EMC Basic Typical Site/Forecourt Layout............................ 9
Figure 5. TLS-300/ProPlus/EMC Basic Console Dimensions and Designated
Conduit Knockouts.. 11
Figure 6. TLS-350/ProMax/EMC Console Dimensions and Designated
Conduit Knockouts.. 12
Figure 7. Wiring AC Power to the TLS-300/ProPlus/EMC Basic Console......................... 13
Figure 8. Wiring AC Power to the TLS-350/ProMax/EMC Console................................. 14
Figure 9. Determining the Minimum Mag Probe Length .. 17
Figure 10. Determining Mag Probe Length for Installation in a Vapor Extractor Riser 18
Figure 11. Calculating the Correct Mag Probe Length for Media-Isolated installation 18
Figure 12. Mag Probe AST Installation Kit... 19
Figure 13. Mag Probe Vapor Extractor w/Coupling Adaptor Installation Kit.................... 20
Figure 14. Mag Probe Vapor Extractor w/o Coupling Adaptor Installation Kit 21
Figure 15. Mag Plus Probe Chem-ISO Kit ... 22
Figure 16. Mag Plus Probe LPG-ISO Kit .. 23
Figure 17. Cap and Cord Grip Kit ... 24
Figure 18. Metal Cap and Ring Kit ... 25
Figure 19. Modifying an Existing Metal Riser Cap ... 25
Figure 20. UST Probe Installation - Dedicated Riser .. 26
Figure 21. AST Probe Installation - Dedicated Riser .. 27
Figure 22. Installing a Riser Adaptor Beneath the Metal Cap and Adapter Ring 27
Figure 23. Vapor Extractor Cabling Entry .. 28
Figure 24. Mag Probe Vapor Extractor Riser Installation - w/ Coupling Adaptor 30
Figure 25. Mag Probe Vapor Extractor Riser Installation - w/o Coupling Adaptor 31
Figure 26. Media Isolated Mag Plus Probe Installation Example .. 33
Figure 27. Rain Shield Installed Position .. 34
Figure 28. Media Isolated Mag Plus Probe Installation Example .. 37
Figure 29. Rain Shield Installed Position .. 37
Figure 30. Example Interstitial Sensor Installation - Fiberglass UST 38
Figure 31. Example Interstitial Position Sensitive Sensor Installation - Steel UST 39
Figure 32. Example Interstitial MicroSensor Installation - Steel UST 39
Figure 33. Example MicroSensor Installation in Riser Containment - Steel UST 40
Figure 34. Example Hydrostatic Reservoir Single Float Sensor Installation 40
Figure 35. Example Hydrostatic Reservoir Dual Float Sensor Installation 41
Figure 36. Example Ground Temperature Thermistor Installation 41
Figure 37. Example Containment Sump Sensor Installation ... 42
Figure 38. Example Dispenser Pan Sensor Installation ... 42
Figure 39. Example Dispenser Pan Sensor Installation in a Containment Sump 43
Figure 40. Typical Oil/Water Separator Sensor Installation ... 43
Figure 41. Example Sump Sensor Installations in Sump ... 44
Figure 42. Example Position-Sensitive Sensor Installation ... 45
Figure 43. Example Vapor Sensor Installation ... 45
Figure 44. Example Groundwater Sensor Installation ... 46
Figure 45. Example Mag Sensor Installation ... 46
Figure 46. Simplified Vacuum Sensor Installation ... 47
Figure 47. CSTP Liquid Sensor Wiring Installation ... 48
Figure 48. Example Probe Wiring Run in Buried Rigid Conduit .. 49
Figure 49. Example Probe Wiring Run via Direct Burial Cable ... 50
Figure 50. Field Wiring Probes and Sensors Cables to Console Cables 51
Figure 51. Field Wiring Probes and Sensors Cables to Console Cables - concluded 52
Figure 52. Epoxy Sealing Probe and Sensor Field Connections .. 53
Figure 53. Fixed-Feature Console System Circuit Directory ... 55
Figure 54. Example of Probe and Sensor Wiring to a TLS-300/ProPlus/EMC Basic Console 56
Figure 55. Example of Wiring I/O Devices to a TLS-300/ProPlus/EMC Basic Console 57
Figure 56. Console Interface Module Bays .. 58
Figure 57. Modular Console System Circuit Directory ... 59
Figure 58. Probe/Thermistor Interface Module Wiring ... 60
Figure 59. 3 Probe / 3 Sensor Interface Module Wiring ... 61
Figure 60. Interstitial Sensor Interface Module Wiring ... 62
Figure 61. Type B Interface Module Wiring .. 63
Figure 62. Type A Interface Module ... 64
Figure 63. Groundwater Sensor Interface Module Wiring ... 65
Figure 64. Vapor Sensor Interface Module Wiring.. 66
Figure 65. Smart Sensor Interface Module .. 67
Figure 66. 4-Relay Output Module Wiring ... 68
Figure 67. I/O Combination Module Wiring .. 69
Figure 68. Pump Relay Monitor Module Wiring .. 70
Figure 69. Pump Sense Module Wiring .. 71
Figure B-1. Universal Mounting Kit Contents ... B-1
Figure B-2. Mounting the Sensor in a Stabilizer Tube to a Support Bar B-2
Figure B-3. Mounting the Sensor in the Dispenser Pan ... B-3
Figure B-4. Mounting the Sensor using Two Extension Brackets ... B-4
Figure B-5. Mounting the Sensor to Rigid Conduit ... B-5
Figure B-6. Mounting the Sensor to a Supply Line ... B-6
Figure B-7. Mounting the Sensor in a Containment Sump .. B-7

Tables

Table 1. Dimensions for Steel Riser Pipes and Mag Probe Floats ... 16
Table 2. Mag Probe AST installation kit - Part No. 312020-984 .. 19
Table 3. Vapor Extraction Riser Kit (w/o coupling adaptor) - Part No. 846500-001 20
Table 4. Vapor Extraction Riser Kit (w/o coupling adaptor) - Part No. 846500-002 21
Table 5. Chem-ISO Kit, P/N 331824-000 ... 22
Table 6. LPG-ISO Kit, P/N 331807-000 .. 23
Table 7. Cap and cord grip kit - Part No. 330020-282 ... 24
Table 8. Metal cap and ring kit - Part No. 312020-952 ... 25
Introduction

This manual describes site preparation and installation procedures for the following consoles:

FIXED-FEATURE CONSOLES

- Veeder-Root TLS-300 Consoles,
- ProPlus Consoles
- Gilbarco EMC Basic Consoles

MODULAR CONSOLES

- Veeder-Root TLS-350 Series Consoles,
- ProMax Consoles
- Gilbarco EMC Consoles

This manual assumes that you are installing the console in a new site (before pavement is put down and with no wiring runs in place). Among the topics covered are:

- Site layout considerations.
- Installing the console and connecting wiring from the AC power panel.
- Probe installation procedures.
- Sensor installation procedures.
- Installing wiring conduit between the console and the probes and sensors.
- Probe and sensor field junction box wiring diagrams.
- Attaching sensor wiring to the console.

Contractor Certification Requirements

Veeder-Root requires the following minimum training certifications for contractors who will install and setup the equipment discussed in this manual:

Installer (Level 1) Certification: Contractors holding valid Installer Certification are approved to perform wiring and conduit routing; equipment mounting; probe, sensor and carbon canister vapor polisher installation; wireless equipment installation; tank and line preparation; and line leak detector installation.

ATG Technician (Level 2/3 or 4) Certification: Contractors holding valid ATG Technician Certifications are approved to perform installation checkout, startup, programming and operations training, system tests, troubleshooting and servicing for all Veeder-Root Series Tank Monitoring Systems, including Line Leak Detection. In addition, Contractors with the following sub-certification designations are approved to perform installation checkout, startup, programming, system tests, troubleshooting, service techniques and operations training on the designated system.
- Wireless 2
- Tall Tank

VR Vapor Products Certification: Contractors holding a certification with the following designations are approved to perform installation checkout, startup, programming, system tests, troubleshooting, service techniques and operations training on the designated system.
- ISD – In Station Diagnostics
- PMC – Pressure Management Control
- CCVP - Veeder-Root Vapor Polisher
• Wireless – ISD/PMC Wireless
• A current Veeder-Root Technician Certification is a prerequisite for the VR Vapor Products course.

Warranty Registrations may only be submitted by selected Distributors.

Related Documents

DOCUMENTS REQUIRED TO INSTALL EQUIPMENT

This equipment must be installed according to the applicable installation document:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>ATEX Descriptive System</th>
<th>IECEx Descriptive System</th>
<th>UL/cUL Control Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Apparatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS-450/8600</td>
<td>331940-006</td>
<td>331940-106</td>
<td>331940-008</td>
</tr>
<tr>
<td>TLS-350R or TLS-350 Plus</td>
<td>331940-001</td>
<td>331940-101</td>
<td>331940-011</td>
</tr>
<tr>
<td>TLS-300</td>
<td>331940-002</td>
<td>331940-102</td>
<td>331940-013</td>
</tr>
<tr>
<td>TLS-50 or TLS2 or TLS-IB</td>
<td>331940-003</td>
<td>331940-103</td>
<td>331940-014</td>
</tr>
<tr>
<td>TLS-4/8601</td>
<td>331940-017</td>
<td>331940-117</td>
<td>331940-018</td>
</tr>
<tr>
<td>Intrinsically Safe Apparatus for Wireless Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Gauge Accessories</td>
<td>331940-005</td>
<td>331940-105</td>
<td>331940-012</td>
</tr>
</tbody>
</table>

Related Documents

After the console is wired to power, probes, and sensors, you should power up and program the console following the instructions contained in the System Setup manual.

- 576013-623 TLS-3XX System Setup Manual
- 576013-858 Direct Burial Cable Installation Manual
- 577013-744 Mag Plus Probe Installation Guide
- 577013-528 Serial Comm Modules Installation Instructions for Modular Consoles
- 331940-011 Control Drawing for TLS-350
Safety Precautions

The following safety symbols may be used throughout this manual to alert you to important safety hazards and precautions.

EXPLOSIVE
Fuels and their vapors are extremely explosive if ignited.

FLAMMABLE
Fuels and their vapors are extremely flammable.

ELECTRICITY
High voltage exists in, and is supplied to, the device. A potential shock hazard exists.

TURN POWER OFF
Live power to a device creates a potential shock hazard. Turn Off power to the device and associated accessories when servicing the unit.

WARNING
Heed the adjacent instructions to avoid equipment damage or personal injury.

WEAR EYE PROTECTION
Wear eye protection when working with pressurized fuel lines or epoxy sealant to avoid possible eye injury.

GLOVES
Wear gloves to protect hands from irritation or injury.

INJURY
Careless or improper handling of materials can result in bodily injury.

READ ALL RELATED MANUALS
Knowledge of all related procedures before you begin work is important. Read and understand all manuals thoroughly. If you do not understand a procedure, ask someone who does.

National Electrical Code Compliance

The following information is for general reference and is not intended to replace recommended National Electric Code (NEC) procedures. It is important for the installer to understand that electrical equipment and wiring located in Class I, Division 1 and 2 installations shall comply with the latest appropriate Articles found in the National Electric Code (NFPA 70) and the Code for Motor Fuel Dispensing Facilities and Repair Garages (NFPA) 30A.

PROBE- AND SENSOR-TO-CONSOLE WIRING

Wire Type
To ensure the best operating systems available, Veeder-Root **REQUIRES** the use of shielded cable for all probes and sensors regardless of conduit material or application. In these installations, shielded cable must be rated less than 100 picofarad per foot and be manufactured with a material suitable for the environment, such as Carol™ C2534 or Belden™ 88760, 8760, 8770 or similar.

Note: Throughout this manual, when mentioning any cable or wire being used for probe and sensor to console wiring, it will be referring to shielded cable.
Wire Length

Improper system operation could result in undetected potential environmental and health hazards if the probe- or sensor-to-console wire runs exceed 1000 feet. Wire runs must be less than 1000 feet to meet intrinsic safety requirements.

Splices

Veeder-Root recommends that no splices be made in the wire run between a sensor or probe junction box and the console. Each splice degrades signal strength and could result in poor system performance.

Wire Gauges - Color coded

- Shielded cable must be used in all installations. Sensor-to-console wires should be #14-#18 AWG stranded copper wire and installed as a Class 1 circuit. As an alternate method when approved by the local authority having jurisdiction, 22 AWG wire such as Belden 88761 may be suitable in installations with the following provisions:
 - Wire run is less than 750 feet
 - Capacitance does not exceed 100 pF/foot
 - Inductance does not exceed 0.2 μH/foot

POWER WIRING

- Wires carrying 120 or 240 Vac from the power panel to the console should be #14 AWG (or larger) copper wire for line, neutral and chassis ground (3); and #12 AWG copper wire for barrier ground.
- Wires carrying 120 Vac from power panel to a Pump Sense Module, Mechanical Dispenser Interface Module, or Wireless PLLD Controller module should be #14 AWG copper wire.
- Wires carrying 240 Vac from power panel to a Wireless PLLD AC Interface Module should be #12 AWG copper wire.

SENSOR AND PROBE JUNCTION BOXES

Weatherproof electrical junction boxes with a gasketed cover are required on the end of each probe and sensor conduit run at the manhole or monitoring well location. Gasketing or sealing compound must be used at each entry to the junction box to ensure a waterproof junction. The interior volume of each junction box must be a minimum of 16 cubic inches.

Veeder-Root recommends the following junction boxes or equivalent:

- Appleton Electric Co. - JBDX junction box, JBK-B cover and JB-GK-V gasket.
- Crouse-Hinds Co. - GRFX-139 junction box, GRF-10 cover and GASK-643 gasket.
Permissible Console Input/Output Connections

TLS-300/PROPLUS/EMC BASIC CONSOLES

Figure 1 illustrates the permissible devices that can be connected to the console. Note that the number of inputs/outputs in your console may differ from those shown below.

Figure 1. Permissible Inputs/Outputs by Area - TLS-300/ProPlus/EMC Basic Console
TLS-350/PROMAX/EMC CONSOLES

Figure 2 illustrates the console’s plug in module locations and the maximum number allowed in each of the three module sections of the console: Communications Bay, Power Bay, and Intrinsically Safe Bay. Input/output cables to the console’s Comm modules attach to connectors on each module’s end plate, and are accessible through an opening in the base of the console. Note that the number/type of modules in your console may differ from those in the figure below.

![Figure 2. TLS-350 Series/ProMax/EMC Consoles - Plug-in Module Compartments](consol350jmods.eps)
Planning Probe and Sensor Installations

The contractor should diagram all proposed trench and conduit runs between the console’s intended location and its deployed sensors and probes. A site diagram will help you to calculate conduit and wiring lengths, and necessary quantities of junction boxes, sealing boxes, clamps, brackets, etc.

Throughout this planning process and in the actual installation, you must follow the latest National Electric Codes, federal, state, and local codes, as regards conduit type, depth below grade, sealing, grounding, wire capacities, etc.

Reminder: to ensure optimum signal strength, plan sensor and probe wiring lengths so that there will be no splices between the field junction box connection and the interface module connection in the console. Every splice in the hazardous area requires the use of an epoxy sealing kit which should not be pulled through the conduit and must be located in a separate waterproof, sealed junction box.

To maintain the intrinsically-safe integrity of the installed console, sensor and probe conduits can share the same trenches with power conduits, but the intrinsically safe sensor and probe wiring can NOT share the same conduit with any other wiring. Also, the intrinsically safe wiring for console can NOT share the same conduit with another device’s intrinsically safe wiring.

Install conduit (3/4, 1, or 1-1/4” I.P.S.) from all probe and sensor locations to the console’s location. Knockouts for 3/4, 1, or 1-1/4” I.P.S. conduit are provided in the intrinsically safe area of the console for probe and sensor wiring.

The conduit must be properly sealed in accordance with the latest National Electric Code (NFPA 70) and the Code for Motor Fuel Dispensing Facilities and Repair Garages (NFPA 30A) since they pass from a Class I, Division 1 or 2 hazardous area into a non-hazardous area. Figure 3 and Figure 4 illustrate a typical site deployment of probes and sensors.

If the console is being installed into a paved site, you can either dig out trenches in the pavement to run conduit out to sensors and probes as described above, or you can cut grooves in the pavement, run direct burial cable to these devices, and then seal over the cable grooves (if permitted).

NOTE: Installation of the Direct Burial System can only be done in those locations where local codes permit the use of buried cable instead of conduit, and epoxy splices instead of junction boxes.
Intrinsically safe wiring shall be installed in accordance with Article 504-20 of the latest National Electrical Code (NFPA 70).

WARNING:
Substitution of components may impair intrinsic safety.

Circuitry within the Console barrier forms an intrinsically safe, energy-limited system. This system makes probes and sensors safe for use in a Class I, Group D hazardous location. Probe and sensor wiring is intrinsically safe only when connected to Veeder-Root’s Consoles, reference Form Numbers 8485.

Figure 3. TLS-300/ProPlus/EMC Basic Typical Site/Forecourt Layout
Planning Probe and Sensor Installations

Permissible Console Input/Output Connections

Intrinsically safe wiring shall be installed in accordance with Article 504-20 of the latest National Electrical Code (NFPA 70). See Control Drawing 331940-011 for Intrinsically Safe Wiring.

WARNING: Substitution of components may impair intrinsic safety.

Circuitry within the Console barrier forms an intrinsically safe, energy-limited system. This system makes probes and sensors safe for use in a Class I, Group D hazardous location. Probe and sensor wiring is intrinsically safe only when connected to Veeder-Root's Console Form Numbers 8470 and 8482.

Hazardous Area

LEGEND

- **CC** Carbon Canister Vapor Polisher
- **DS** Discriminating Sump Sensor
- **DP** Dispenser Pan Sensor
- **FM** ISO Flow Meter
- **GW** Groundwater Sensor
- **HK** Hook signal - all line leak systems
- **IS** Intertitial Liquid Sensor
- **LS** Liquid Sensor (CSTP)
- **MD** MDIM Pulse/Totalizer Input (TLS-350R only)
- **MP** Magnetostrictive Probe
- **MS** Mag Sump Sensor
- **PM** Pump Relay Monitor
- **PR** ISO Pressure Sensor
- **PS** Pump Sense Input
- **QD** Pressurized Line Leak Detection Inputs
- **QS** Pressurized Line Leak Sensor
- **T** Thermistor Sensor
- **V** Vapor Sensor
- **VM** Volumetric Line Leak Sensor
- **VS** Vacuum Sensor
- **WS** Wireless Line Leak Sensor

Figure 4. TLS-350/ProMax/EMC Typical Site/Forecourt Layout
Locating the Console

Select a mounting location on the inside of any building. The console must be protected from severe vibration, extremes in temperature and humidity, rain, and other conditions that could harm computerized electronic equipment. The console's operating temperature range is 32 to 104°F (0 to 40°C), and its storage temperature range is -40 to +162°F (-40 to +74°C).

The mounting surface should be strong enough to support the console's weight which could exceed 22 pounds for the TLS-300/ProPlus/EMC Basic Console, or 40 pounds for the TLS-350/ProMax/EMC Console with a full complement of modules. You should also consider wall space for routing the power wiring conduits and probe and sensor wiring conduits that must be connected to the console.

Mounting the Console

Install the console fastening devices to the mounting surface using the hole pattern shown in Figure 5 or Figure 6, Up to 1/4" diameter screws may be used.

Mount the console to the mounting surface using the four mounting flanges on the back of the unit. Install metal conduit (3/4, 1, or 1-1/4" I.P.S.) between the console and the power panel. Figure 5 and Figure 6 show the four designated knockouts (2 on top and 2 on bottom) through which power wiring can safely enter the consoles.

WARNING

Explosive vapors or flammable liquids could be present near locations where fuels are stored or being dispensed.

This console is not explosion proof. Do not install this console in a volatile, combustible, or explosive atmosphere.

An explosion or fire resulting in serious injury or death, property loss and equipment damage could occur if the console is installed in a volatile, combustible or explosive atmosphere (Class I, Division 1 or 2).
Figure 5. TLS-300/ProPlus/EMC Basic Console Dimensions and Designated Conduit Knockouts
To remove a knockout, insert a flat head screwdriver into the slot in the center of the knockout and gently move the screwdriver up and down to remove the inner knockout, or left and right to remove the middle knockout. Keep up this movement until the connecting tabs break off. To remove the outer or largest knockout, use pliers to break out the remaining large ring.

Figure 6. TLS-350/ProMax/EMC Console Dimensions and Designated Conduit Knockouts
Wiring the Console

WARNING

This console contains high voltages which can be lethal. It is also connected to low power devices that must be kept intrinsically safe.

1. Turn power Off at the circuit breaker. Do not connect the console AC power supply wires at the breaker until all devices are installed.

2. Attach conduit from the power panel to the console's Power Area knockouts only.

Connecting power wires to a live circuit can cause electrical shock that may result in serious injury or death.

Routing conduit for power wires into the intrinsically safe compartment can result in fire or explosion resulting in serious injury or death.

1. Check the Input Power Rating on the label affixed to the underside of the console to verify whether input power requirements are 120 Vac or 240 Vac.

2. Pull four wires between the power panel and the console; three #14 AWG or larger color-coded wires for AC line (hot), AC neutral and chassis ground; and one #12 AWG wire for barrier ground.

3. Depending on the console, connect the input AC power wires as shown in Figure 7 or Figure 8.

Figure 7. Wiring AC Power to the TLS-300/ProPlus/EMC Basic Console
CHECKING THE GROUND CONNECTION

Use an ohmmeter to check the electrical resistance between the console’s metal case and the earthing ground wire’s connection at the “known good earth ground”. It should read less than 1 ohm.
Wiring Conduit Safety Issues

WARNING

Probes and sensors operate in areas where flammable liquids and explosive vapors may be present.
Improper installation may result in fire or explosion causing serious injury or death.
Practice the following:
1. Read thoroughly and follow the instructions shipped with each probe and sensor.
2. Probe and sensor wiring conduit must not contain any other wires.
3. Probe and sensor wiring and conduits must enter the console only through their designated areas.
4. Power and communication wires and conduit must not enter the intrinsically safe area of the console.

Wiring between the console and the probes and sensors is of limited electrical power so that there is insufficient energy to ignite fuel. In the console, the low power, probe and sensor wiring is considered intrinsically safe because it is physically isolated from all high power wiring. To maintain the integrity of this safety feature, you must install probe and sensor wiring in separate conduits from all other wiring. In addition, probe and sensor conduits can only enter the console through the designated intrinsically safe area knockouts.

NOTE: Wiring from separate probes and sensors may be run in the same conduit or trough provided they are powered by the same console. Improper system operation will result if probe and sensor wiring to separate consoles share the same conduit. Do not run probe and sensor wiring to separate consoles in the same conduit. Improper system operation could also occur if the conduit locking nuts attaching conduit to the console are not tightened sufficiently to score the console’s paint film and make good metal-to-metal contact. For proper grounding use grounding/bonding set screw conduit locknuts to achieve a good conduit-to-console metal bond.
Determining Mag Probe Riser Size

Probe Riser Pipe Installation

A riser assembly consisting of a riser and riser cap, should be used for Mag Probe installation. Riser caps (see page 19) are normally fitted at the time of probe installation. If the probes are not to be installed immediately, cap the riser.

Table 1 lists minimum riser dimensions for use with Veeder-Root mag probe float sizes.

<table>
<thead>
<tr>
<th>V-R Nominal Float Size (inch)</th>
<th>V-R Float OD inch (mm)</th>
<th>NPS Nom Pipe inch (mm)</th>
<th>DN Nom Pipe mm</th>
<th>ID Nom Pipe inch (mm)</th>
<th>ID Nom Pipe mm</th>
<th>Recommended NPS Riser Size inch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.155 (29.34)</td>
<td>1</td>
<td>25</td>
<td>1.049</td>
<td>26.65</td>
<td>2 (50)</td>
</tr>
<tr>
<td>2</td>
<td>1.875 (47.63)</td>
<td>2</td>
<td>50</td>
<td>2.067</td>
<td>52.51</td>
<td>2 (50)</td>
</tr>
<tr>
<td>3</td>
<td>3.015 (76.58)</td>
<td>3</td>
<td>80</td>
<td>3.068</td>
<td>77.93</td>
<td>3 (80)</td>
</tr>
<tr>
<td>4</td>
<td>3.765 (95.63)</td>
<td>4</td>
<td>100</td>
<td>4.026</td>
<td>102.26</td>
<td>4 (100)</td>
</tr>
</tbody>
</table>

$DN = \text{Diameter Nominal}, \ NPS = \text{Nominal pipe size}, \text{Pipe type is iron or schedule 40 steel}$
Determining Mag Probe Length

Determining Mag Probe Length

1. Measure the distance from the bottom of the tank to the top of the probe manway, or the 2-, 3- or 4-inch tank opening- this is the minimum probe length (ref. Figure 9).
2. The probe canister must be within the riser pipe (minimum length of 10 inches [254mm]).

Figure 9. Determining the Minimum Mag Probe Length

Determining Mag Probe Length for Installation in a Vapor Extractor Riser

1. Measure the distance from the top of the riser to the Extractor Cage Cross Pin (see Figure 10). Record this distance as “D1” (Important - Dimension “D1” must be at least 25 inches).
2. Use the extractor wrench tool (OPW Part Number: 89-0044) to remove the Ball Float Check Valve Assembly from the riser.
Determining Mag Probe Length

3. Measure from the top of the riser to the bottom of the tank and record this distance as "D2".
4. Subtract “D1” from “D2”, then add 7 inches, to determine the correct probe length.

![Figure 10. Determining Mag Probe Length for Installation in a Vapor Extractor Riser](image)

Determining Mag Probe Length for Media-Isolated Installations

If tank’s inside diameter is unknown, perform the following procedure (ref. Figure 11):

1. Measure the distance from the inside bottom of the tank to the inside top of the tank (A).
2. Order a probe length of B (where B = A + 6”).

![Figure 11. Calculating the Correct Mag Probe Length for Media-Isolated installation](image)
Special Mag Probe Installation Kits

In addition to the Mag Probe installation kits shipped with each probe (containing floats, spacer rings, cable, etc.), your installation may also require one or more of the special kits described in this section.

AST Installation Kit

This kit is recommended when installing Mag Probes into an above ground storage tank (AST). This kit contains a length of flexible conduit, connectors, etc., for easier probe access. The kit contents are listed in Table 2 and shown in Figure 12.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 feet</td>
<td>3/8” Flexible conduit</td>
<td>576008-294</td>
</tr>
<tr>
<td>1</td>
<td>3/8” Adaptor nut</td>
<td>329972-002</td>
</tr>
<tr>
<td>2</td>
<td>3/8” Straight liquidtight connectors and related parts</td>
<td>576008-295</td>
</tr>
<tr>
<td>1</td>
<td>Cord Grip Group</td>
<td>331028-001</td>
</tr>
</tbody>
</table>

Table 2. Mag Probe AST installation kit - Part No. 312020-984

![Figure 12. Mag Probe AST Installation Kit](probes/astkit.png)
Vapor Extraction Riser Kit w/ Coupling Adaptor

This kit contains parts needed to install a Mag Probe into a Vapor Extractor Riser that has a Coupling Adapter (parts listed in Table 3 and shown in Figure 13):

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wire Nut</td>
<td>576008-461</td>
</tr>
<tr>
<td>1</td>
<td>Cable Tie</td>
<td>576008-482</td>
</tr>
<tr>
<td>1</td>
<td>Splice Enclosure</td>
<td>514100-357</td>
</tr>
<tr>
<td>1</td>
<td>Splice Kit Instructions Manual</td>
<td>576013-861</td>
</tr>
<tr>
<td>1</td>
<td>PG7 / 1/4“ Cord Grip Fitting</td>
<td>576008-637</td>
</tr>
<tr>
<td>1</td>
<td>Modified OPW Adaptor</td>
<td>331448-001</td>
</tr>
<tr>
<td>1</td>
<td>Shield - Fitting</td>
<td>331449-001</td>
</tr>
<tr>
<td>1</td>
<td>4” Hose Clamp</td>
<td>576008-638</td>
</tr>
<tr>
<td>12 inches</td>
<td>Flex Conduit</td>
<td>576008-294</td>
</tr>
</tbody>
</table>

Figure 13. Mag Probe Vapor Extractor w/Coupling Adaptor Installation Kit
Vapor Extraction Riser Kit w/o Coupling Adaptor

This kit contains parts needed to install a probe in a Vapor Extractor Riser that does not have a coupling adapter (parts listed in Table 4 and shown in Figure 14):

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wire Nut</td>
<td>576008-461</td>
</tr>
<tr>
<td>1</td>
<td>Cable Tie</td>
<td>576008-482</td>
</tr>
<tr>
<td>1</td>
<td>Splice Enclosure</td>
<td>514100-357</td>
</tr>
<tr>
<td>1</td>
<td>Splice Kit Instructions Manual</td>
<td>576013-861</td>
</tr>
<tr>
<td>1</td>
<td>Riser Cap</td>
<td>331106-001</td>
</tr>
<tr>
<td>1</td>
<td>Gasket</td>
<td>331140-001</td>
</tr>
<tr>
<td>1</td>
<td>Cord Grip Bushing</td>
<td>330787-001</td>
</tr>
<tr>
<td>1</td>
<td>Cord Grip Nut</td>
<td>330594-001</td>
</tr>
<tr>
<td>12 inches</td>
<td>Flex Conduit</td>
<td>576008-294</td>
</tr>
</tbody>
</table>

Figure 14. Mag Probe Vapor Extractor w/o Coupling Adaptor Installation Kit
Chem-ISO kit

This probe kit is intended to be installed in a tank that has a threaded 2” NPT opening to accept the probe and connectors.

The parts listed in Table 5 and shown in Figure 15 below are included in the Installation kit (P/N 331824-000) and are required to install a Veeder-Root Form No. 8463 Series Mag Probe into a tank.

Table 5. Chem-ISO Kit, P/N 331824-000

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Part Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tube group</td>
<td>331800-XXX</td>
</tr>
<tr>
<td>1</td>
<td>Float/Magnet group</td>
<td>331823-001</td>
</tr>
<tr>
<td>1</td>
<td>Male connector 7/8” tube to 1” NPT</td>
<td>576008-643</td>
</tr>
<tr>
<td>1</td>
<td>Reduction bushing 2” NPT to 1” NPT</td>
<td>576008-645</td>
</tr>
<tr>
<td>1</td>
<td>Float retaining ring</td>
<td>511805-378</td>
</tr>
<tr>
<td>1</td>
<td>Cable</td>
<td>330272-XXX</td>
</tr>
<tr>
<td>1</td>
<td>Cable Seal Kit (cord grip fitting, sealant pack, wire nuts, and tie wraps)</td>
<td>330020-067</td>
</tr>
<tr>
<td>1</td>
<td>Rain shield</td>
<td>331880-001</td>
</tr>
</tbody>
</table>
LPG-ISO kit

This probe kit is intended to be installed in a tank that has a threaded 1-1/2” NPT opening to accept the probe and connectors. The threaded opening must meet local codes for pressure vessels.

The parts listed in Table 6 and shown in Figure 16 below are included in the installation kit (P/N 331807-000) and are required to install a Veeder-Root Form No. 8463 Series Mag Probe into a liquefied petroleum gas (LPG) tank.

Table 6. LPG-ISO Kit, P/N 331807-000

<table>
<thead>
<tr>
<th>Qty</th>
<th>Part Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tube group</td>
<td>331800-XXX</td>
</tr>
<tr>
<td>1</td>
<td>Float/Magnet group</td>
<td>331797-001</td>
</tr>
<tr>
<td>1</td>
<td>Male connector 7/8” tube to 1” NPT</td>
<td>576008-643</td>
</tr>
<tr>
<td>1</td>
<td>Reduction bushing 1-1/2” NPT to 1” NPT</td>
<td>576008-644</td>
</tr>
<tr>
<td>1</td>
<td>Float retaining ring</td>
<td>511805-378</td>
</tr>
<tr>
<td>1</td>
<td>Cable</td>
<td>330272-XXX</td>
</tr>
<tr>
<td>1</td>
<td>Cable Seal Kit (cord grip fitting, sealant pack, wire nuts, and tie wraps)</td>
<td>330020-067</td>
</tr>
<tr>
<td>1</td>
<td>Rain shield</td>
<td>331880-001</td>
</tr>
<tr>
<td>1</td>
<td>Warning tag</td>
<td>331879-001</td>
</tr>
</tbody>
</table>

Figure 16. Mag Plus Probe LPG-ISO Kit
Riser Cap Kit for Mag Probe Installations

The cap on the riser containing the Mag Probe must be modified to allow the probe’s cable to exit the riser. This modification requires making a 1/2"-14 NPT tapped hole in the cap for a cord grip. Two types of drilled and tapped Riser Cap kits are available for purchase, or you may be able to modify the existing riser cap.

CAP AND CORD GRIP KIT

This Riser Cap kit (Table 7) contains a non-metallic cap which screws onto the 4” NPT riser (Figure 17). The cap comes drilled and tapped with a cord grip.

Table 7. Cap and cord grip kit - Part No. 330020-282

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cap Riser</td>
<td>331106-001</td>
</tr>
<tr>
<td>1</td>
<td>Gasket</td>
<td>331140-001</td>
</tr>
<tr>
<td>1</td>
<td>Bushing - Cord Grip</td>
<td>330787-001</td>
</tr>
<tr>
<td>1</td>
<td>Nut - Cord Grip</td>
<td>330594-001</td>
</tr>
</tbody>
</table>

Figure 17. Cap and Cord Grip Kit

METAL CAP AND RING KIT

This riser cap kit contains an adapter ring which screws onto the 4”NPT riser and a quick-release metal cap which clamps onto the ring (Table 8). The cap comes drilled and tapped with a cord grip (Figure 18).
Modifying an Existing Metal Cap

In order to ensure that the riser cap seals properly to the probe cable and riser, we recommend that you purchase one of the kits available for this purpose. Riser Caps from other manufacturers may require modification. If you use your own metal riser cap, you must drill and tap it for a cord grip fitting (P/N 331028-001) as follows.

1. Remove the cap to a non-hazardous location.
2. Drill and tap the cap for a 1/2"-14 NPT cord grip thread [Figure 19].

Table 8. Metal cap and ring kit - Part No. 312020-952

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adapter ring and gasket</td>
<td>514100-332</td>
</tr>
<tr>
<td>1</td>
<td>Cap and gasket</td>
<td>327869-003</td>
</tr>
<tr>
<td>1</td>
<td>Group Cord Grip</td>
<td>331028-001</td>
</tr>
</tbody>
</table>

Figure 18. Metal Cap and Ring Kit

Figure 19. Modifying an Existing Metal Riser Cap
Mag Probe Installation

UST/AST Tank - Dedicated Riser

1. Turn OFF power to the console.
2. Remove any sludge from the bottom of the tank.
3. Check that floats, boot, and cable are assembled correctly on probe (ref. Mag Probe Assembly Manual).
4. Gently slide the float(s) to the bottom of the probe shaft before raising the probe. Carefully lower the probe into the riser pipe until the boot rests on the bottom of the tank [See Figure 20 for UST installation or Figure 21 for AST installation].

CAUTION! Handle probes carefully. Striking or dropping the probe will result in loss of calibration and could cause permanent damage.

UST RISER CAP ATTACHMENT

1. If you are using the one piece cap (see Figure 17 on page 24), push the end of the probe cable through the cord grip bushing and nut on the cap, leaving a minimal amount of slack between the probe and cap. Screw the cap onto the riser by hand until the gasket first contacts the pipe. Then lightly tap the cap with a hammer to tighten it an additional 3/4 turn. Go to Step 3.
2. If you are installing the metal cap and adapter ring (see Figure 18 on page 25), screw the ring onto the 4\" riser until the gasket contacts the pipe, then use a pipe wrench to tighten it an additional 3/4 turn. Push the cable through the metal cap and cord grip, then clamp the cap onto the ring.

At sites that require installation of a riser adaptor (Phil-Tite M/F 4X4 or equivalent) at the top of the riser, do so following the manufacturer’s instructions. Next screw the adapter ring from the Veeder-Root kit (P/N 312020-952) onto the riser adaptor by hand until the gasket contacts the sealing surface. Then use a torque wrench attached to an appropriate strap wrench (K-D Specialty tools nylon strap oil filter wrench, or equivalent) and tighten the ring to 35 - 45 ft-lbs. Loosen the cord grip nut and push the cable through the metal cap and cord grip, then clamp the cap onto the ring (see Figure 22).
3. Make sure there is a minimal amount of slack between the probe and cap, then tighten the cord grip nut until the cable is held firmly. Push the end of the cable through the field J-box cord grip, then tighten that cord grip nut as well. Splice and seal the wires in the J-box as shown in the Probe and Sensor Field Wiring on page 51.

AST RISER CAP ATTACHMENT

1. If you are using the one piece cap (see Figure 17 on page 24), push the end of the probe cable through the cap and cord grip bushing, leaving a minimal amount of slack between the probe and cap. Discard the cord grip nut and attach the Adaptor Nut from the AST kit to the cap (see Figure 12 on page 19). Tighten the Adaptor Nut until the cable is held firmly. Go to Step 3.

2. If you are installing the metal cap and ring (see Figure 18 on page 25), screw the ring onto the 4" riser until the gasket contacts the pipe, then use a pipe wrench to tighten it an additional 3/4 turn. Using UL-classified pipe sealant (suitable for the fuels involved), screw the cord grip fitting into the tapped hole and tighten. Place the cord grip bushing in the fitting. Discard the cord grip nut and loosely screw the Adaptor Nut from the AST kit onto the cord grip fitting (see Figure 12 on page 19). Push the cable through the metal cap, bushing, and Adaptor nut, then clamp the cap onto the ring. Make sure there is a minimal amount of slack between the probe and cap, then tighten the Adaptor Nut until the cable is held firmly.

3. Next assemble the liquidtight connectors on both ends of the flexible conduit as shown in Figure 12. Push the cable through the flexible conduit assembly and into the J-box. Connect the flexible conduit assembly to the Adaptor Nut on one end and the J-box on the other.

4. Tighten the fittings until snug. Splice and seal the wires in the J-box as shown in the Probe and Sensor Field Wiring on page 51.

UST Installation - Vapor Extractor Riser w/ Coupling Adaptor

This type installation is usually a retrofit and is usually connected to the console via direct burial cabling. The site should already be prepped (all digging, saw cutting, and jackhammering done) prior to probe installation (see Figure 23). A piece of flex conduit should be in place as shown to protect the cable.

![Diagram](probes/verprep.png)
1. Remove any existing hardware from the Vapor Extractor Riser so that it’s 4” NPT riser threads are exposed.

2. Use the extractor wrench tool (OPW Part Number: 89-0044) to remove the Ball Float Check Valve and Extractor Cage inside the bottom of the 4” riser (ref. Figure 10 on page 18). Important! - Ball Float Check Valve and Extractor Cage may be difficult to remove; use caution.

3. Remove any sludge from the bottom of the tank.

4. Assemble the probe floats, spacer rings, and cable as per the Mag Probe Assembly Manual.

5. Gently slide the float(s) to the bottom of the probe shaft. Important! - Handle probes carefully. Striking or dropping the probe will result in loss of calibration and could cause permanent damage.

6. Carefully lower the probe into the riser pipe until the boot rests on the bottom of the tank.

7. Thread the probe cable through the bottom of the new Coupling Adaptor and out the tapped opening in its side.

8. Screw the Coupling Adaptor onto the 4” riser until the gasket first contacts the riser pipe. Then use a pipe wrench to tighten the Coupling Adaptor an additional 3/4 turn.

9. Test pull the cable to insure that it is free of spring and that the probe is resting on the bottom of the tank. (Make sure there is some slack in the cable.)

10. Slip the PG7 cord grip fitting (“0” ring end first) over the cable and screw it into the tapped hole in the Coupling Adaptor (ref Figure 13 on page 20 for the correct PG7 cord grip assembly). Tighten snugly - Be careful not to overtighten. Slide the domed nut of the PG7 fitting down the cable and tighten securely onto the PG7 fitting so that the cable stays firmly in place. Again, be careful not to overtighten.

11. Reattach the riser cap from the original installation onto the Coupling Adaptor.

12. Position the Shield-Fitting over the PG7 cord grip and secure with the hose clamp (see Figure 24 on page 30).

13. Splice the probe cable to the direct burial cable as shown in the Probe and Sensor Field Wiring on page 51, and seal following instructions shipped with the splice kit. Observe polarity!

14. Secure splice enclosure against the Shield-Fitting with the tie wrap.

CAUTION: If Ball Float Check Valve was part of your Overfill Protection System, you now need to consider another form of overfill protection (i.e. TLS alarm or drop tube with overfill protection valve or some other accepted means).
UST Installation - Vapor Extractor Riser w/o Coupling Adaptor

This type installation is usually a retrofit and is usually connected to the console via direct burial cabling. The site should already be prepped (all digging, saw cutting, and jackhammering done) prior to Probe Installation (see Figure 23 on page 28). A piece of flex conduit should be in place as shown to protect the cable.

1. Remove any existing hardware from the Vapor Extractor Riser so that it's 4” NPT riser threads are exposed.
2. Use the extractor wrench tool (OPW Part Number: 89-0044) to remove the Ball Float Check Valve and Extractor Cage inside the bottom of the 4” riser (ref. Figure 10 on page 18). Important! - Ball Float Check Valve and Extractor Cage may be difficult to remove; use caution.
3. Remove any sludge from the bottom of the tank.
4. Assemble the probe floats, spacer rings, and cable as per the Mag Probe Assembly Manual.
5. Gently slide the float(s) to the bottom of the probe shaft. Important! - Handle probes carefully. Striking or dropping the probe will result in loss of calibration and could cause permanent damage.
6. Carefully lower the probe into the riser pipe until the boot rests on the bottom of the tank.
7. Ensure that the cord grip nut on the new cap is loose so that the bushing can rotate freely.
8. Thread the probe cable through the bushing and nut on the cap, leaving a minimal amount of slack between the probe and cap.
9. Install the cap onto the riser, threading it by hand until the gasket first contacts the riser pipe. Then lightly tap the cap with a hammer to tighten it an additional 3/4 turn.
10. Splice the probe cable to the direct burial cable as shown in the Probe and Sensor Field Wiring on page 51, and seal following instructions shipped with the splice kit. Observe polarity!
11. Bring the cable down the side of riser and secure into place with the tie wrap.
CAUTION: If Ball Float Check Valve was part of your Overfill Protection System, you now need to consider another form of overfill protection (i.e. a console alarm, a drop tube with overfill protection valve, or some other accepted means).

Installing a Chem-ISO Mag Probe

BEFORE YOU BEGIN

Before you begin installation, read the following guidelines:

- It is essential that you carefully read and follow the warnings and instructions in this manual to protect yourself and others from serious injury, explosion, or electrical shock.

- For safety reasons, we have taken particular care in the design of this product to limit the power in the wiring to the product tanks and to keep that wiring physically separated from any other wiring. It is your responsibility to maintain the effectiveness of these safety features by installing this product in accordance with the instructions and warnings which follow. Your failure to do so could create danger to life and property.

- Failure to install this probe kit in accordance with its instructions and warnings will result in voiding of all warranties connected with this product. This unit does not contain any user controls. Opening or tampering with a magnetostrictive probe will result in voiding the warranty.

Note: Remove any sludge from the bottom of the tank. Sludge can interfere with the proper operation of the float.
ATTACHING THE FLOAT TO THE TUBE

Slide the large shipping washer off of the stainless steel tube and discard it. Carefully slide the stainless steel float, non-magnet end first, onto the tube and down against the retaining ring at the bottom of the tube (the float end marked “TOP” should be facing up). The float must be installed magnet-end up to measure fuel correctly (see Figure 26).

INSTALLING THE STAINLESS STEEL TUBE INTO THE TANK

1. With the float against the retaining ring, carefully lift the open end of the tube up and lower the assembly, float end first, into the tank until the tube rests on the bottom of the tank (Figure 26). Carefully slide the 1” x 2” stainless steel bushing, 2” end first, down over the tube until it rests against the tank opening. Apply UL classified sealant suitable for use with the product in the tank to the outside bushing threads that will be screwed into the tank fitting. Screw the bushing into the tank fitting. Tighten the bushing as required to ensure a proper seal.

SEALING THE STAINLESS STEEL TUBE IN THE TANK OPENING

2. Loosen the gland nut on the male connector. Carefully slide the male connector, 1” end first, down onto the tube until it rests against the bushing. Apply UL classified sealant suitable for use with the product in the tank to the threads of the connector’s NPT threads. Screw the connector into the bushing. Tighten the connector as required to ensure a proper seal.

3. Push the tube down until it rests on the tank’s bottom. Using a felt marker, make a mark on the tube at the top of the gland nut. Raise the tube until the mark is 1-inch above the nut, then hand tighten the gland nut until the tube is held in place (this distance is necessary for expansion and contraction of the tank). Tighten the gland nut one and one quarter full turns beyond hand tight to crimp the ferrules to the tube and create the proper seal.

INSTALLING THE PROBE IN THE STAINLESS STEEL TUBE

4. Slide the rubber rain shield onto the probe shaft (narrow end up) and push it all the way up to the probe canister. Gently slide the probe down into the tube until it rests on the bottom of the tube. Slide the rain shield down the shaft until it rests against the top end of the tube. The lower (wide) end of the shield may be a little
over the top of the gland nut. Note: the rain shield is intended to keep water out from between the probe's shaft and the inside of the tube so you don’t want to force the shield down below the top end of the tube (see Figure 27).

5. Attach the probe cable connector to the mating plug on the top of the probe canister. Hand tighten the connector securely.

6. If required by local regulations, install a protective housing. A typical housing consists of a reducer, 4-inch diameter pipe, and union. The final assembly must comply with local codes.

7. Splice and seal the wires as shown in the Probe and Sensor Field Wiring on page 51.

*NOTE: to ensure that the probe/tube kit can be installed, the Mag probe length and the Chem-ISO probe kit length should be at least 6 inches longer than the tank’s inside diameter.
Installing a LPG-ISO Mag Probe

Enter the custom float size (in-tank setup - ver. 22 or later)

At the console, select Setup Mode/In-Tank Setup/Float Size. Press Change to display “Float Size: Custom”\(^1\). For the Media-Isolated probe’s stainless steel float you need to enter a Fuel Offset value of +1.000 and an Invalid Fuel value of +003.300. (Water Offset and Water Minimum values are ignored for this probe so no changes are necessary). The probe is now installed and setup.

Installing a LPG-ISO Mag Probe

- This product is to be installed and operated in the highly combustible environment of an LPG storage tank. It is essential that you carefully read and follow the warnings and instructions in this manual to protect yourself and others from serious injury, explosion, or electrical shock.

- For safety reasons, we have taken particular care in the design of this product to limit the power in the wiring to the fuel tanks and to keep that wiring physically separated from any other wiring. It is your responsibility to maintain the effectiveness of these safety features by installing this product in accordance with the instructions and warnings which follow. Your failure to do so could create danger to life and property.

- Failure to install this product in accordance with its instructions and warnings will result in voiding of all warranties connected with this product. This unit does not contain any user controls. Opening or tampering with a magnetostrictive probe will void the warranty.

Before you begin

1. Make sure that the tank is depressurized (drained) and free of liquid and combustible vapors.
2. Remove any sludge from the bottom of the tank. Sludge can interfere with the proper operation of the float.

\(^1\) This offset can be entered using a “Tilt” value of +0.94” and 2-inch float entry on earlier software versions.
ATTACHING THE FLOAT TO THE TUBE

Slide the large shipping washer off of the stainless steel tube and discard it. Carefully slide the float, non-magnet end first, onto the tube and down against the retaining ring at the bottom of the tube. The float must be installed magnet-end up to measure fuel correctly (see Figure 28).

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Veeder-Root Mag Plus probe is installed and operated in the highly combustible environment of an LPG tank. Fire or explosion resulting in serious injury or death could result if the equipment is improperly installed or modified.</td>
</tr>
<tr>
<td>1. It is essential that you carefully read and follow the warnings and instructions in this manual to protect yourself and others from serious injury due to fire or explosion. Failure to do so could result in undetected potential environmental and health hazards.</td>
</tr>
<tr>
<td>2. Comply with all federal, state, and local codes, and other applicable safety codes. All wiring must comply with UL/CUL standards and other local electrical and pressure vessel codes.</td>
</tr>
<tr>
<td>3. All work on LPG systems must comply with NFPA 58, Liquefied Petroleum Gas Code and other applicable code requirements.</td>
</tr>
<tr>
<td>4. LPG tanks must be depressurized (drained) and free of liquid and combustible vapors before work begins.</td>
</tr>
<tr>
<td>5. Failure to comply with these requirements could result in death, serious personal injury, property loss, or equipment damage.</td>
</tr>
<tr>
<td>6. Substitution of components may impair intrinsic safety.</td>
</tr>
<tr>
<td>7. Circuitry within the probe and console barrier form an intrinsically safe, energy limited system. The probe wiring is intrinsically safe only when connected to Veeder-Root consoles having form numbers 8470, 8482, 8485, or 8560.</td>
</tr>
</tbody>
</table>

INSTALLING THE STAINLESS STEEL TUBE INTO THE TANK

With the float against the retaining ring, carefully lift the open end of the tube up and lower the assembly, float end first, into the tank until the tube rests on the bottom of the tank (Figure 28). Carefully slide the 1” x 1-1/2” stainless steel bushing, 1-1/2” end first, down over the tube until it rests against the tank opening. Apply UL classified sealant suitable for use with LPG to the outside bushing threads that will be screwed into the tank fitting. Screw the bushing into the tank fitting. Tighten the bushing as required to ensure a proper seal.

SEALING THE STAINLESS STEEL TUBE IN THE TANK OPENING

1. Loosen the gland nut on the male connector. Carefully slide the male connector, 1” end first, down onto the tube until it rests against the bushing. Apply UL classified sealant suitable for use with LPG to the threads of the connector's NPT threads. Screw the connector into the bushing. Tighten the connector as required to ensure a proper seal.

2. Push the tube down until it rests on the tank’s bottom. Using a felt marker, make a mark on the tube at the top of the gland nut. Raise the tube until the mark is 1-inch above the nut, then hand tighten the gland nut until the tube is held in place (this distance is necessary for expansion and contraction of the tank). Tighten the gland nut one and one-quarter full turns beyond hand tight to crimp the ferrules to the tube and create the proper seal.
INSTALLING THE PROBE IN THE STAINLESS STEEL TUBE

1. Slide the rubber rain shield onto the probe shaft (narrow end up) and push it all the way up to the probe canister. Gently slide the probe down into the tube until it rests on the bottom of the tube. Slide the rain shield down the shaft until it rests against the top end of the tube. The lower (wide) end of the shield may be a little over the top of the gland nut. Note: the rain shield is intended to keep water out from between the probe’s shaft and the inside of the tube so you don’t want to force the shield down below the top end of the tube (see Figure 29).

2. Attach the warning tag as shown in Figure 28. Attach the probe cable connector to the mating plug on the top of the probe canister. Hand tighten the connector securely.

3. If required by local regulations, install a protective housing. A typical housing consists of a reducer, 4-inch diameter pipe, and union. The final assembly must comply with local codes.

4. Splice and seal the wires as shown in the Probe and Sensor Field Wiring on page 51.

Entering Custom Float Size (In-Tank Setup - Ver. 22 or later)

At the console, select Setup Mode/In-Tank Setup/Float Size. Press Change to display “Float Size: Custom”. For the LPG probe you need to enter a Fuel Offset value of +0001.120 and an Invalid Fuel value of +0003.250. (Water Offset and Water Minimum values are ignored for this probe so no changes are necessary). The probe is now installed and setup.

1. This offset can be entered using a “Tilt” value of +1.06” and 2-inch float entry on earlier software versions.
Mag probe float (outside tube)

Mag probe shaft* (inside tube)

Rain shield

Warning tag

Bushing, Stainless Steel
1" NPT x 1.5" NPT or 1" NPT x 2" NPT

Male connector 7/8" tube to 1" NPTF

7/8" OD stainless steel tube with welded stainless plug (Mag probe shaft lowered into tube)

*NOTE: to ensure that the probe/tube kit can be installed, the Mag probe length and the LPG-ISO probe kit length should be at least 6 inches longer than the tank’s inside diameter.

3.25" Approximate lowest product level measured by probe

1" clearance to allow for expansion

Tank bottom

Tank

Mag probe canister

Mag probe shaft*

Probe cable

Connector

Figure 28. Media Isolated Mag Plus Probe Installation Example

Figure 29. Rain Shield Installed Position.
Sensor Installation

Sensor Installation Diagrams

General installation diagrams for various Veeder-Root sensors are shown in Figure 30 through Figure 47. When installing sensors you must adhere to the procedures shown in these figures, unless a separate manual is shipped with your sensor, in which case you should follow that manual’s installation guidelines. For those sensor installations requiring the Universal Mounting Kit (P/N 331144-001), refer to Appendix B for suggested attachment configurations.

Figure 30. Example Interstitial Sensor Installation - Fiberglass UST
Figure 31. Example Interstitial Position Sensitive Sensor Installation - Steel UST

Figure 32. Example Interstitial MicroSensor Installation - Steel UST
Figure 33. Example MicroSensor Installation in Riser Containment - Steel UST

Figure 34. Example Hydrostatic Reservoir Single Float Sensor Installation
Figure 35. Example Hydrostatic Reservoir Dual Float Sensor Installation

Figure 36. Example Ground Temperature Thermistor Installation
Sensor Installation

Sensor Installation Diagrams

Figure 37. Example Containment Sump Sensor Installation

- Submersible pump
- Containment sump
- Weatherproof junction box with 1/2-inch N.P.T. threads (16 cubic inch volume minimum)
- 1/2'' Rigid conduit to console
- Seal-off
- Cord grip
- Brackets, clamp, etc., from Universal sensor mounting kit

*Containment sump sensor should:
1. Rest in the lowest point of sump.
2. Be positioned as close to outer wall as possible.
3. Be mounted in a true vertical position.

Figure 38. Example Dispenser Pan Sensor Installation

- U-channel
- Weatherproof junction box with 1/2-inch N.P.T. threads (16 cubic inch volume minimum)
- Seal-off
- Rubber grommet seal clamped on inside - or as recommended by dispenser pan manufacturer
- Dispenser pan sensor
- Dispenser pan
- 1/2'' Rigid conduit to console

*Dispenser pan sensor should:
1. Rest in the cup or the lowest point of the dispenser pan.
2. Be positioned so as to be removable by pulling the sensor straight up out of the pan.
3. Be mounted in a true vertical position.
Figure 39. Example Dispenser Pan Sensor Installation in a Containment Sump

*Dispenser pan sensor should:
1. Rest in the cup or the lowest point of the dispenser containment sump.
2. Be positioned so as to be removable by pulling the sensor straight up out of the pan.
3. Be mounted in a true vertical position.*

Figure 40. Typical Oil/Water Separator Sensor Installation

- 2"NPT threaded opening
- Top of level sensor riser
- 3.5" min clearance above riser top for sensor clearance
- Top float switching point
- Bottom float switching point
Figure 41. Example Sump Sensor Installations in Sump

*Sump sensor should:
1. Rest on the base of the sump.
2. Be positioned as close to outer wall as possible.
3. Be mounted in a true vertical position.
4. Be installed only in a dry sump.*

- **Cable to junction box and seal-off (see below)**
- **Sump sensor** (installation examples)
- **Existing conduit or piping**
- **Product pipe**
- **Weatherproof junction box with 1/2-inch N.P.T. threads (16 cubic inch volume minimum)**
- **Cord grip**
- **Rubber grommet seal clamped on inside - or as recommended by sump manufacturer**
- **1/2” Rigid conduit to console**
- **Sump base**
- **Sump sensors**
- **Cable from piping sump sensor**
- **Epoxy seal per NFPA specs**

Figure 41. Example Sump Sensor Installations in Sump
IMPORTANT! DO NOT MOUNT SENSOR TO FLEXIBLE PRODUCT LINE.

IMPORTANT! Housing must compress position indicator against bottom of the sump or you will have a 'Sensor Out' alarm.

Suspend vapor sensor 12 inches above highest level reached by water table, if known; or 12 inches above the bottom of the well or any water in the well.
Sensor Installation

Figure 44. Example Groundwater Sensor Installation

Figure 45. Example Mag Sensor Installation
Figure 46. Simplified Vacuum Sensor Installation
Figure 47. CSTP Liquid Sensor Wiring Installation

- 2-conductor cable (comes preattached to liquid switch in CSTP housing)
- Cord grip
- Seal-off
- 1/2" rigid conduit (to Console)
- Weatherproof junction box with 1/2-inch N.P.T. threads (16 Cubic inch volume minimum)
- 14" min. dia. manhole
Probe and Sensor Conduit Installation

WARNING

Probes and sensors operate in areas where flammable liquids and explosive vapors may be present.
Improper installation may result in fire or explosion causing serious injury or death.
Practice the following:
1. Read thoroughly and follow the instructions shipped with each probe and sensor.
2. Probe and sensor wiring conduit must not contain any other wires.
3. Probe and sensor wiring and conduits must enter the console only through their designated areas.
4. Power and communication wires and conduit must not enter the intrinsically safe compartment of the console.

Wiring Run Methods

Two wiring run methods are commonly used for probes and sensors - Wiring pulled through buried, sealed 1/2" conduit; or direct burial cable. NOTE: PVC conduit is an acceptable alternate where accepted by local codes (ref. “National Electrical Code Compliance” on page 3 for more detail on cable requirements).

BURIED RIGID CONDUIT

The preferred method, especially in new sites before driveway surfaces are paved, is to pull probe and sensor wiring through buried 1/2" rigid conduit [Figure 48].

Pull two or three conductors shielded cable (as required). Individual wires should be color-coded between the console and the junction box at each probe and sensor location (do not gang wires together, i.e., splicing all sump sensor + wires together to run one wire back to console). Use single lengths of wire with no splices to ensure optimum signal strength.

Figure 48. Example Probe Wiring Run in Buried Rigid Conduit
CAUTION: Since wires for multiple sensors may enter the console through a single conduit, it is recommended that you use a different color-code for each wire or individually mark each wire to identify sensor inputs. Also, if the intrinsically safe wires enter the building in a wiring trough, only Veeder-Root intrinsically safe wire can be in the trough. Keep all low power (intrinsically safe) wiring isolated from high power wires in all wiring troughs.

DIRECT BURIAL CABLE

An alternative to trenching through existing pavement is to use direct burial cable. Before considering the direct burial method, check to be sure that direct burial practices are acceptable at this location. The direct burial method requires grinding using an abrasive wheel, a 1/4" to 3/8" wide by 1-1/4" deep groove (adding 1/4" of depth for each additional cable) in the pavement surface, laying Veeder-Root supplied direct burial cable down in the bottom of the groove, laying an expanded polyethylene foam backer rod over the cable(s), and then a placing a 1/4" to 1/2" bead of silicone sealant over the backer rod to within a minimum of 3/8" below the pavement surface [see Figure 49].

If you decide upon the direct burial method, consult the direct burial cable installation manual for detailed installation instructions (reference manual 576013-858).

Figure 49. Example Probe Wiring Run via Direct Burial Cable
Probe and Sensor Field Wiring

Figure 50 contains diagrams for connecting, at the field junction box, cables from the probe and sensor to cables from the console. Check diagrams closely for polarity requirements.

Figure 50. Field Wiring Probes and Sensors Cables to Console Cables
Sealing Field Connections

WIRING RUN THROUGH RIGID CONDUIT

1. Pull the wires from the probe or sensor into the junction box. Pull the two or three wires from the console through the seal-off box, the conduit attaching the junction box to the seal-off box and into the junction box.

2. Using wire nuts, connect the two or three wires from the probe or sensor to the two or three wires coming from the console. Be sure to observe color codes or tags when making these connections so that the sensor or probe outputs are attached to the correct terminals in the console.

3. Seal wire nuts with epoxy sealant following the instructions in Figure 52.

CAUTION: Epoxy sealant is irritating to eyes, respiratory system, and skin. Can cause allergic skin reaction. Contains: epoxy resin and Cycloaliphatic epoxycarboxylate. **Precautions:** Wear suitable protective clothing,
gloves, eye, and face protection. Use only in well ventilated areas. Wash thoroughly before eating, drinking, or smoking.

4. Do NOT terminate shield or drain wire in the field junction box, ground shield and drain wires at console only.
5. Place the bag with the resin sealed wiring connections in the junction box. Replace and tighten the junction box cover.

DIRECT BURIAL CABLE

When using direct burial cable for probe- or sensor-to-console wiring runs, the sealing materials and procedure are completely different. Refer to the Direct Burial Cable Installation Manual 576013-858.

![Instructions:](coneckel/epoxy2w.png)

Instructions:

NOTE: When temperature is below 50°F (10°C), keep resin in a warm place prior to mixing (e.g., in an inside pocket next to body).
1. Open epoxy sealant package, and remove resin pak.
2. Holding resin pak as shown in A, bend pak along long length.
3. As shown in B, firmly squeeze the RED SIDE of the resin, forcing it through the center seal and into BLACK SIDE.
4. Mix thoroughly to a uniform color by squeezing contents back and forth 25-30 times.
5. Squeeze mixed, warm resin into one end of bag and cutoff other end.
6. Slowly insert wiring connections into sealing pack until they fit snugly against the opposite end as shown in C.
7. Twist open end of bag and use tie wrap to close it off and position the tie wrapped end up until the resin jells.

Figure 52. Epoxy Sealing Probe and Sensor Field Connections
Connecting Probe/Sensor Wiring to Consoles

PROBE AND SENSOR WIRING PRECAUTIONS
To The Installer! You Must Read And Understand This Information.

Input/Output Wiring Positions and Labeling
In all cases, the devices wired to the console’s input/output terminal blocks must be recorded to prevent improper replacement during installation or service.

IMPORTANT! During programming, the devices wired to each terminal are identified and stored in system memory. If a device is removed and reconnected to a different set of console terminals after programming, the system will not properly recognize the data being received. To ensure trouble-free operation, you should fill out the Circuit Directory as you connect each device.

CIRCUIT DIRECTORY
The circuit directory is adhered to the inside of the right-hand door. It should be filled out by the installer as the console’s input/output devices are being connected to the console to record the physical location and type of device wired to each input or output terminal of the console.

In the example directory shown in Figure 36, Input 1 connects to the Backup Generator. Relay 1 is connected to an overfill alarm device. Sensor locations 1, 2, and 3 connect to two different sensors on the three tanks. Probe locations 1 - 3 connect to Mag probes in the three tanks.

Wiring Assignments
Identify all wires according to their terminal block location using the self-adhesive numbering labels furnished. Accurately record on the circuit directory the location of each device as you attach wires to the terminal block.

WARNING
The equipment is used in location where lethal voltages and explosive vapors or flammable fuels may be present. Care must be taken when installing, servicing or replacing parts in the system or serious injury or death from explosion, fire or shock may occur.

For this system:
1. Comply with the latest National Electric Code, federal, state, and local codes, and any other applicable safety codes. In addition, take necessary precautions during installation, service, and repair to prevent personal injury, property loss and equipment damage.
2. Refer servicing to trained and qualified personnel only.
3. Substitution of components may impair intrinsic safety.
4. Be sure AC power is “OFF” before opening the console panel covers and connecting probe and sensor wires. Do not short any voltage across any barrier terminal including sensors or probes.

TLS-300/ProPlus/EMC Basic Consoles

Input/Output Wiring Positions and Labeling
In all cases, the devices wired to the console’s input/output terminal blocks must be recorded to prevent improper replacement during installation or service.

IMPORTANT! During programming, the devices wired to each terminal are identified and stored in system memory. If a device is removed and reconnected to a different set of console terminals after programming, the system will not properly recognize the data being received. To ensure trouble-free operation, you should fill out the Circuit Directory as you connect each device.

CIRCUIT DIRECTORY
The circuit directory is adhered to the inside of the right-hand door. It should be filled out by the installer as the console’s input/output devices are being connected to the console to record the physical location and type of device wired to each input or output terminal of the console.

In the example directory shown in Figure 36, Input 1 connects to the Backup Generator. Relay 1 is connected to an overfill alarm device. Sensor locations 1, 2, and 3 connect to two different sensors on the three tanks. Probe locations 1 - 3 connect to Mag probes in the three tanks.

Wiring Assignments
Identify all wires according to their terminal block location using the self-adhesive numbering labels furnished. Accurately record on the circuit directory the location of each device as you attach wires to the terminal block.
Connecting Probe/Sensor Wiring to Consoles

Figure 53. Fixed-Feature Console System Circuit Directory

CONNECTING PROBES AND SENSORS TO THE CONSOLE

Figure 54 contains wiring connection examples for the probes and sensors listed below. Only ground the probe/sensor shields at the console, not at their field junction boxes. Probes wires connect to the probe terminal block and sensors connect to the sensor terminal block.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mag Probe</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Interstitial sensors for fiberglass/steel tanks</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Sump sensors</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating Dispenser Pan sensors</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating containment sump sensors</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Hydrostatic sensors (for all double-wall tanks)</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>
Figure 54. Example of Probe and Sensor Wiring to a TLS-300/ProPlus/EMC Basic Console

POWER AREA

INTRINSICALLY SAFE AREA

Rigid conduit (enters console through an intrinsically safe area knockout)

Attach cable shields to ground lug

MAXIMUM SENSOR OUTPUT RATINGS:
13 VDC, 0.20 AMP.

MAXIMUM PROBE OUTPUT RATINGS:
13 VDC, 0.20 AMP.

WARNING: TO INSURE INTRINSIC SAFETY, THE COVER MUST NOT BE REMOVED.

Connecting Probe/Sensor Wiring to Consoles
TLS-300/ProPlus/EMC Basic Consoles
CONNECTING DEVICES TO POWER AREA I/O TERMINALS

Relay Outputs

Depending on the model console installed, you may have one or two Form-C relay outputs which you can connect to overfill alarms and external audible/visual warning devices. Note – there are important output relay connection restrictions:

1. Do not connect output relays to a device that draws more than 2 amperes of current. Output power: output relay contact, resistive load - 120 Vac, 2 A max.; or 24 Vdc, 2 A max.
2. Alarm relays cannot be used for flow control. Alarm relays provide only a momentary closure and cannot actuate flow control devices such as valves and pump motor relays for extended periods of time.

Connect the wires from the external device to the appropriate RELAY connector(s) on the I/O terminal block [see 2-relay output version in Figure 55].

External Inputs

The INPUT 1 and 2 terminals can accept two dry-contact switch closure inputs from an external device such as a backup generator.

For each external input, connect a shielded cable consisting of two #18 AWG conductors to the INPUT connectors on the I/O terminal block [see Figure 55].

![Figure 55. Example of Wiring I/O Devices to a TLS-300/ProPlus/EMC Basic Console](image-url)
TLS-350/ProMax/EMC Consoles

MODULE/CONNECTOR POSITIONS AND LABELING

Modular consoles have three bays in which interface modules can be installed; Comm bay (left door) and Power and Interstitially Safe bays (right door).

Most consoles will be shipped with modules installed as ordered. If additional features are added at a later date, modules will be field installed.

In all cases, the position of the modules, their respective connectors and the devices wired to the connectors must be recorded to prevent improper replacement during installation or service. A circuit directory for Power and I.S. bay Interface Modules is adhered to the back of the right-hand door for this purpose.

During programming, module positions and the devices wired to each module are identified and stored in memory. If a connector is removed and reinstalled on a different module after programming, or if an entire module with its connector is removed and reinstalled in a different module slot, the system will not properly recognize the data being received.

Module Position
1. Record on the circuit directory the type of module in each slot location.
2. If a system contains multiple modules of a single type (i.e., two Probe/Thermistor Interface Modules), they may be swapped between their respective slot locations, however, the connectors must remain with their original locations, not with the original modules.

Connector Position
1. Identify all connectors according to their slot location using the self-adhesive numbering labels furnished with each module. Accurately record on the circuit directory the location of each device wired to the connector as you attach wires to the module.
2. Once a device has been wired to certain terminals on a connector and the system has been programmed, the wires from that device may not be relocated to other terminals without reprogramming the system.
Grounding Probe and Sensor Shields

Connect probe and sensor cable shields to ground at the console only. Do not ground both ends of the shield.

Circuit Directory

A circuit directory is adhered to the inside of the right-hand door. It should be filled out by the installer as the module’s connectors are being wired.

The following information should be recorded for each slot:

- **Module Type**: record what type of module has been installed in the slot, e.g., Probe/Thermistor Interface Module.
- **Position Record**: record the physical location and/or type of device wired to each terminal of the module connector in the slot, e.g., Tank 1.

In the example directory shown in Figure 57, slot 4 contains a Probe/Thermistor Interface Module. Position 1 on the connector receives the + and – wires from the probe in Tank 1, position 2 from the probe in Tank 2, etc. Since this system has five tanks, a second Probe/Thermistor Interface Module is installed in slot 5 and its connector position 1 receives the wires from the probe in Tank 5.

Positions on each module are numbered and each connector terminal is identified with the acceptable input. There are eight positions for each slot even though some modules accept fewer devices.

![Circuit Directory Diagram](consoles/moduldir.png)

Figure 57. Modular Console System Circuit Directory
PROBE/THERMISTOR INTERFACE MODULE - I.S. BAY

Figure 58. Probe/Thermistor Interface Module Wiring

Connecting Devices
Connect Mag Probes and Thermistor in the table below to the appropriate terminals on the Probe/Thermistor Interface module as shown in Figure 58.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mag Probe</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Ground temperature thermistor - When using volumetric line leak detection (VLLD), only one ground temperature thermistor is needed per site and the thermistor must be wired to thermistor position number 1 (positions 2 - 4 are not used).</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>
3 PROBE/3 SENSOR INTERFACE MODULE - I.S. BAY

![Diagram of 3 Probe / 3 Sensor Interface Module Wiring](console3pbn.eps)

Figure 59. 3 Probe / 3 Sensor Interface Module Wiring

Connecting Devices

Connect Mag Probes and sensors in the table below to the appropriate terminals (Probe or Sensor) on the Probe/Liquid Sensor Interface module as shown in Figure 60.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mag Probe</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Interstitial sensor for fiberglass/steel tanks</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Sump sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating dispenser pan sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating containment sump sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Hydrostatic sensor (for all double-wall tanks)</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>
INTERSTITIAL SENSOR INTERFACE MODULE - I.S. BAY

Connecting Devices
Connect sensors in the table below to the appropriate terminals on the Interstitial Sensor Interface module as shown in Figure 60.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstitial sensors for fiberglass/steel tanks</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Sump sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Position-Sensitive Sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating dispenser pan sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Discriminating containment sump sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Hydrostatic sensor (for all double-wall tanks)</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Oil/water separator sensor</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>CSTP Liquid Switch</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 60. Interstitial Sensor Interface Module Wiring
Connecting Devices

Connect sensors in the table below to the appropriate terminals on the Type B Interface module as shown in Figure 61.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4SITE solid-state discriminating dispenser pan sensor</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>4SITE solid-state discriminating containment sump sensor</td>
<td>3</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TYPE A INTERFACE MODULE - I.S. BAY

Attaching Cable Shields to Ground Lug Closest to Conduit Entry

Rigid Conduit (enters Console through an I.S. Bay knockout)

Console

Up to 8 Sensors

Connecting Devices

Connect sensors in the table below to the appropriate terminals on the Type A Interface module as shown in Figure 62.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4SITE discriminating Interstitial sensor for fiberglass tanks</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Micro sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Solid-state dispenser pan sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Solid-state containment sump sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 62. Type A Interface Module
GROUNDWATER SENSOR INTERFACE MODULE - I.S. BAY

Figure 63. Groundwater Sensor Interface Module Wiring

Connecting Device

Connect sensor in the table below to the appropriate terminals on the Groundwater Sensor Interface module as shown in Figure 63.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4SITE Groundwater Sensor</td>
<td>3</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Connecting Device

Connect sensor in the table below to the appropriate terminals on the Vapor Sensor Interface module as shown in Figure 64.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Sensor</td>
<td>3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 64. Vapor Sensor Interface Module Wiring
SMART SENSOR INTERFACE MODULE - I.S. BAY

Connecting Devices

Connect sensors in the table below to the appropriate terminals on the Smart Sensor Interface module as shown in Figure 65.

<table>
<thead>
<tr>
<th>Device</th>
<th>Wires</th>
<th>Observe Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mag Sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>ISD Vapor Flow meter</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>ISD Vapor Pressure Sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Vacuum Sensor</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Carbon Canister Vapor Polisher</td>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

WIRING ADDITIONAL IS BAY MODULES

The connection diagram for Pressurized Line Leak Interface Modules (also an Intrinsically Safe bay module) is covered in the PLLD Site Prep and Installation Manual which is shipped with that system.
4-RELAY OUTPUT MODULE - POWER BAY

The 4-Relay Output Module incorporates four Form-C relay outputs and the I/O Combination Module incorporates two Form-C relay outputs.

Important Output Relay Connection Restrictions

1. Do not connect output relays to a device that draws more than 2 amperes of current. Output power: output relay contact, resistive load - 120 Vac, 2 A max.; or 24 Vdc, 2 A max.

2. Alarm relays cannot be used for flow control. Alarm relays provide only a momentary closure and cannot actuate flow control devices such as valves and pump motor relays for extended periods of time.

Connect the wires from each external device to the appropriate terminals on the output module [see Figure 66].

![Figure 66. 4-Relay Output Module Wiring](consolas/4rmw.e.png)
I/O COMBINATION MODULE - POWER BAY

The I/O Combination Module can accept two dry-contact switch closure inputs from an external device such as a line leak detector or well monitoring system [Figure 67].

For each external input, connect a shielded cable consisting of two #18 AWG conductors to the appropriate input terminals on the module.

Figure 67. I/O Combination Module Wiring
PUMP RELAY MONITOR MODULE - POWER BAY

The Pump Relay Monitor Module can accept ac inputs from the STP’s Remote Control Box [Figure 68].

For each STP to be monitored, connect a shielded cable consisting of two #14 AWG conductors to the appropriate input terminals on the module.

![Figure 68. Pump Relay Monitor Module Wiring](consoles/prmodulerj2.png)
PUMP SENSE MODULE - POWER BAY

Connect the two color-coded or marked wires from the pump controls to the appropriate terminals on the Pump Sense Module [see Figure 69].

WIRING ADDITIONAL POWER BAY MODULES

The wiring diagrams for Power Bay modules not covered in this manual can be found in the separate Veeder-Root manuals listed below. Follow the instructions in the manual shipped with the module.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Manual No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Line Leak Controller Modules</td>
<td>Required with Pressure Line Leak Detection.</td>
<td>576013-499</td>
</tr>
<tr>
<td>Line Leak Interface Module</td>
<td>Required with Volumetric Line Leak Detection.</td>
<td>576013-765</td>
</tr>
<tr>
<td>WPLL LD Controller Module</td>
<td>Required with Wireless Pressurized Line Leak Detection.</td>
<td>577013-481</td>
</tr>
<tr>
<td>WPLL LD AC Interface Module</td>
<td>Required with Wireless Pressurized Line Leak Detection.</td>
<td>577013-481</td>
</tr>
<tr>
<td>Mechanical Dispenser Interface Module</td>
<td>Consoles w/BIR only - Dispensing system input from mechanical dispensers. Accepts inputs from up to 4 pulsers or pulse/totalizers.</td>
<td>576013-893</td>
</tr>
</tbody>
</table>

CONNECTING SERIAL COMM MODULES

The Comm cage, in the Communication Bay (left compartment of the console), can accept a wide variety of modules; Serial Comm modules, miscellaneous modules, such as the WPLL D Communications Module, and Dispenser Interface Modules (except Mechanical Dispenser Interface Modules which install in the Power Bay of the console).

SERIAL COMM MODULES

The Comm cage also accepts the Serial Comm modules such as the SiteFax module, RS-232 Interface Module, The Remote Printer Interface module, etc. Follow the installation instructions shipped with these modules.

MISCELLANEOUS MODULES

Follow the installation instructions shipped with these modules:

• WPLL D Communications Module - component of the WPLL D line leak system.
• Printer Interface Module - interfaces between a CPU board and an integral printer.
• TCP/IP Interface Module - allows communication between a console and a PC over the internet.

DISPENSER INTERFACE MODULES (DIMS) - CONSOLES W/BIR ONLY

BIR equipped consoles must be able to communicate with many different dispensing systems to perform Business Inventory Reconciliation (BIR) functions. This communication is done via Dispenser Interface Modules (DIM) that are designed in cooperation with major dispenser manufacturers. The DIM gives the console real-time access to dispenser activity. Connecting a DIM to your particular Dispensing System must be done following instructions found in the installation manual accompanying the DIM.

Before Applying Power to the Console

After all connections have been made to the console, connect the wires carrying ac power to the console at the breaker panel - Check the Input Power Rating on the label affixed to the underside of the console to verify whether input power requirements are 120 Vac or 240 Vac [see Figure 7 on page 13].

Refer to the System Setup manual prior to applying power to the system.
Appendix A: Wiring Record

Wiring Record

The wiring record forms in this appendix are intended for the installer’s use to accurately record the wiring scheme and wiring identification for probes and sensors connected to the console. A definition of each record heading is given below.

NOTE: Failure to identify and maintain the relationship of wiring between probe and sensor locations and their positions on console module connectors could result in the incorrect identification of a leak type or leak location, or improper system operation. It is critical that you properly identify, record, and maintain these wiring relationships.

MODULE POSITION
The slot in the intrinsically safe bay of the console where this module is installed. (See the Circuit Directory located on the inside of the console’s right-hand door.)

MODULE TYPE
Enter the type of module installed in this slot, i.e., Probe #1, Vapor Sensor - NW Corner.

PROBE/SENSOR IDENTIFICATION
Identify the device connected to this module location, i.e., Tank #1 Probe, Vapor Sensor - NW corner.

TERMINAL IDENTIFICATION
Probe and interstitial sensor connectors have 2 terminals per probe or sensor position (+ and −). Vapor sensor, groundwater sensor, and Type B sensor connectors have 3 terminals per sensor.

COLOR CODE OR MARKING
Enter the color or marking that identifies the probe or sensor wire connecting to this module terminal.
Module Position #1
Module Type: ______________________

<table>
<thead>
<tr>
<th>Probe/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
</tbody>
</table>

Module Position #2
Module Type: ______________________

<table>
<thead>
<tr>
<th>Probe/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ V F A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- G G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
</tbody>
</table>
Module Position # 3
Module Type:

<table>
<thead>
<tr>
<th>Probe/ Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Position # 4
Module Type:

<table>
<thead>
<tr>
<th>Probe/ Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module Position #5
Module Type:

<table>
<thead>
<tr>
<th>Probes/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Position #6
Module Type:

<table>
<thead>
<tr>
<th>Probes/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td></td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V F A</td>
<td>W W B</td>
</tr>
<tr>
<td>-</td>
<td>G G G</td>
<td>W W B</td>
</tr>
<tr>
<td>W W B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module Position #7
Module Type: _____________________________

<table>
<thead>
<tr>
<th>Probel/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
</tbody>
</table>

Module Position #8
Module Type: _____________________________

<table>
<thead>
<tr>
<th>Probel/Sensor Identification</th>
<th>Terminal Identification</th>
<th>Color Code or Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>V W F A</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>G W G G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W W B</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Universal Sensor Mounting Kit

Introduction

This addendum describes installation procedures for the Universal Mounting Kit for Dispenser Pan and Containment Sump Sensors, Part Number 331144-001.

Since you can use the Universal Mounting Kit in a variety of ways, only the most commonly used mounting methods are described.

Product Description

The Universal Mounting Kit is compatible with most manufacturer’s dispenser pans and containment sumps and provides added flexibility when mounting the sensors.

KIT CONTENTS

The Universal Mounting Kit, Part No. 331144-001 consists of:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Extension brackets (see Item 1, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>L-bracket (see Item 2, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>3/4-inch U-bolt (see Item 3, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>1-inch U-bolt (see Item 3, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>2-inch U-bolt (see Item 3, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>3/8-inch spring nut (see Item 4, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>3/8-16 X 7/8-inch bolt (see Item 4, Figure B-1)</td>
</tr>
<tr>
<td>4</td>
<td>1/4-20 nut</td>
</tr>
<tr>
<td>3</td>
<td>1/4-20 x 3/4-inch bolt</td>
</tr>
<tr>
<td>4</td>
<td>1/4 flat washer</td>
</tr>
<tr>
<td>1</td>
<td>1/4-20 x 1-1/2 inch machine screw (See Item 5, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>2-inch sensor clamp (See Item 5, Figure B-1)</td>
</tr>
<tr>
<td>1</td>
<td>1/4 X 1-inch spacer (See Item 5, Figure B-1)</td>
</tr>
</tbody>
</table>

Figure B-1. Universal Mounting Kit Contents

Mounting Sensors

Depending on the type of pan you are using, you can configure the Universal Mounting Kit in several different ways. Some of the more frequently used mounting methods are illustrated in the following figures using selected components from the kit as required. The spacer for the 1-1/2 inch machine screw is only needed with a stabilizer.
tube to prevent excess clamping pressure on the sensor (see Figure B-2).

Figure B-2. Mounting the Sensor in a Stabilizer Tube to a Support Bar
Figure B-3. Mounting the Sensor in the Dispenser Pan
Appendix B: Universal Sensor Mounting Kit

Mounting Sensors

Figure B-4. Mounting the Sensor using Two Extension Brackets
Appendix B: Universal Sensor Mounting Kit

Mounting Sensors

Figure B-5. Mounting the Sensor to Rigid Conduit

- U-bolt
- Rigid conduit
- 1/4-20 x 3/4 hex bolt w/ washer and nut (not shown)
- L-bracket
- 1/4-20 x 1-1/2 machine screw w/ washer and nut
- Sensor
- Clamp

Figure B-5. Mounting the Sensor to Rigid Conduit
Appendix B: Universal Sensor Mounting Kit

Mounting Sensors

Figure B-6. Mounting the Sensor to a Supply Line

- Supply line
- U-bolt
- L-bracket
- Sensor
- Clamp

1/4-20 x 3/4 hex bolt w/ washer and nut (not shown)

1/4-20 x 1-1/2 machine screw w/ washer and nut
Appendix B: Universal Sensor Mounting Kit

Mounting Sensors

Figure B-7. Mounting the Sensor in a Containment Sump

- Containment sump wall
- L-bracket
- Sensor
- Clamp
- 1/4-20 x 3/4 hex bolt w/ washer and nut (not shown)
- 1/4-20 x 1-1/2 machine screw w/ washer and nut