Certification Reports

Results of U.S. E.P.A. Standard Evaluations

Point Sensor - Liquid Contact Product Detectors

Contents:

- TLS-350/300/300i Series with Interstitial Liquid Sensor for Fiberglass Tanks (794390-401, 404, 407, 409)
- ILS-350 with Interstitial Liquid Sensor for Fiberglass Tanks (794390-401)
- TLS-350/300/300i Series with Interstitial Liquid Sensor for Steel Tanks (794390-420)
- TLS-350 Series: ILS-350 and TLS-350 with Interstitial Liquid Sensor for Steel Tanks (794390-420)
- TLS-350 Series: TLS-350 and ILS-350 with Groundwater Sensor (794380-621, 622, 624)
- TLS-350 Series: ILS-350 and TLS-350 with Adsistor Vapor Sensor (794390-700)
- TLS-350 with Solid State Discriminating Dispenser Pan (794380-320) and Containment Sump Sensors (794380-350)
- TLS-350 with Discriminating Interstitial Liquid Sensor (Used in a non-discriminating mode) (794380-341)
- TLS-350/300/EMC/EMC BASIC/ProMax/ProPlus with Dual Float (794380-303) and Single Float (794380-301) Hydrostatic Sensors
- TLS-350/300/300i Series Discriminating Dispenser Pan Sensor (794380-322) and Containment Sump Sensor (794380-352)
- TLS-350/300/300i Series Solid-State Dispenser Pan/Containment Sump Sensors (794380-321/351), Piping Sump Sensor (794380-208/209), and Micro Sensor (794380-340)
- TLS-350/300/EMC/EMC BASIC/ILS-350/ProMax/ProPlus Position Sensitive Single Point Sensor (794380-323)
- TLS-350/300R/Simplicity/PC Monitoring System with Discriminating Interstitial Sensor (794380-343)
- TLS-350/300R/Simplicity/PC Monitoring System with MicroSensor (794380-344)
- TLS-350/EMC/EMC-PC/EMC Enhanced/EMC-PC Enhanced/ProMax with Mag Sump Sensor (857080-XXX)
- TLS-350/300R/EMC Series, and Red Jacket ProMax Monitoring System Interstitial Sensor for Double-Wall Tanks - High Alcohol (794380-345)
- TLS-350 Series, EMC Series, EMC Basic, Red Jacket ProMax Magnetostrictive Discriminating Level Indicating Sump Sensor (Mag Sump Sensor 875080-211,-212,-221,-222) Used for Testing of Sump Containment Vessels
- TLS-350/300/EMC/EMC BASIC/ILS-350/Red Jacket ProMax/ProPlus Single Point Mini Hydrostatic Sensor (794380-304)

Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be photocopied, reproduced, or translated to another language without the prior written consent of Veeder-Root.

©Veeder-Root 2006. All rights reserved.

Results of Third Party Standard Evaluation Point Sensor Liquid Contact Product Detectors

This form documents the performance of the cable sensor liquid contact leak detection system described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description

Name	TLS-350/300/300i Series UST Monitoring System					
Version_	with Interstitial Liquid Sensor for Fiberglass Tanks (0794390-401,404,407,409)					
Vendor	Veeder-Root Environmenta	Products				
	125 Powder Forest Drive					
	(street address)					
	Simsbury,	CT	06070-2003	(800) 873-3313		
	(city)	(state)	(zip)	(phone)		
Detector	output type: <u>X</u> Qualitati	ve				
Detector	operating principle:E	lectrical Cond	uctivityCapaci	itance Change		
Interface ProbeProduct PermeableProduct SolubleThermal Conductivity						
Press	ure SwitchMagnetic S	witch <u>X</u> Ot	her <u>(Float Switch)</u>			
Detector sampling frequency:Intermittent X_Continuous						

Evaluation Results

The detector described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

- Detection Accuracy The measure of sensor response to the presence of liquids.
- Response Time Amount of time the detector must be exposed to liquid before it responds.
- Recovery Time Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.
- Lower Detection Limit The smallest liquid concentration that the detector can reliably detect.
- Product Activation Height The height of liquid to cause sensor activation.
- Specificity Indicates the level of response, of the detector, to several different liquids.

¹ Carnegie Mellon Research Institute. <u>Test Procedures for Third Party Evaluation of Leak Detection Methods: Point</u> <u>Sensor Liquid Contact Leak Detection Systems</u>: Final Report - November 11, 1991.

Evaluation Results (continued) > Compiled Test Results for Qualitative Detector

	Detection Accuracy	Product Activation Height	Response Time at a Flow Rate of 0.19 ± 0.010 gal/hr	Recovery Time
Accuracy and Response Time				
Regular Unleaded Commercial Gasoline (6 tests)	100%	0.50 ± 0.02 in (1.27 ± 0.05 cm)	3.45 ± 0.11 min	< 1 min
Specificity				
Synthetic Fuel (3 tests)	100%	[100%]* 0.50 ± 0.02 in (1.27 ± 0.06 cm)	3.89 ± 0.09 min	< 1 min
Diesel Fuel (3 tests)	100%	[97%]* 0.49 ± 0.02 in (1.23 ± 0.06 cm)	3.70 ± 0.12 min	< 1 min
Home Heating Oil #2 (3 tests)	100%	[100%]* 0.50 ± 0.02 in (1.27 ± 0.06 cm)	3.78 ± 0.07 min	< 1 min
Water (3 tests)	100%	[92%]* 0.46 ± 0.02 in (1.17 ± 0.06 cm)	3.25 ± 0.19 min	< 1 min

Test Product Flow Rate: 0.19 ± 0.010 gal/hr.

* Specificity Reference: Regular Unleaded Commercial Gasoline

Test Fuel	Product Activation Height - Calculated Lower Detection Limit for 95% / 5% Condition
Regular Unleaded Commercial Gasoline	0.65 in (1.65 cm)

> **Safety disclaimer:** This test procedure only addresses the issue of the method's ability to detect the presence of liquid product. It does not test the equipment for safety hazards.

Certification of Results

I certify that the point sensor liquid contact product detector was operated according to the vendor's instructions and that the evaluation was performed according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹ I also certify that the results presented above are those obtained during the evaluation.

Margaret Nasta, Ph.D. (printed name) (signature

April 22, 1998 (date) Carnegie Mellon Research Institute ** (organization performing evaluation)

Pittsburg	n, PA	15230
(city, state,		

(412) 268-3475

(phone number)

** Consultant to the Manufacturer

Results of Third Party Standard Evaluation Point Sensor Liquid Contact Product Detectors

This form documents the performance of the cable sensor liquid contact leak detection system described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description

Name	350 Series UST Monitori	ng Systems:	Models ILS 350 (s	<u>erial #Beta 013) & TLS 350</u>
Version_	with Interstitial Liquid Sen	sor for Fiber	glass Tanks (07943	90-401)
Vendor	Veeder-Root Environmenta	al Products		
	125 Powder Forest Drive		<u> </u>	
	(street address)			
<u></u>	Simsbury.	СТ	06070-2003	(800) 873-3313
	(city)	(state)	(zip)	(phone)
Detector	output type: <u>X</u> Qualitat	ive		
Detector	operating principle:	Electrical Co	nductivityCap	acitance Change
Interfa	ace ProbeProduct Po	ermeable	_Product Soluble _	Thermal Conductivity
Press	ure SwitchMagnetic S	Switch <u>X</u>	Other(Float Swite	<u>h)</u>
Detector	sampling frequency:In	termittent	<u>X_Continuous</u>	

Evaluation Results

The detector described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

- Detection Accuracy The measure of sensor response to the presence of liquids.
- Response Time Amount of time the detector must be exposed to liquid before it responds.
- Recovery Time Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.
- Lower Detection Limit The smallest liquid concentration that the detector can reliably detect.
- Product Activation Height The height of liquid to cause sensor activation.
- Specificity Indicates the level of response, of the detector, to several different liquids.

¹ Carnegie Mellon Research Institute. <u>Test Procedures for Third Party Evaluation of Leak Detection Methods: Point</u> <u>Sensor Liquid Contact Leak Detection Systems</u>: Final Report - November 11, 1991.

Liquid Contact Product Detector_UST Monitoring System: Models ILS 350 (Beta 013) & TLS 350 Version____with Interstitial Liquid Sensor for Fiberglass Tanks (0794390-401)___

Evaluation Results (continued)

> Compiled Test Results for Qualitative Detector

	Detection Accuracy	Product Activation Height	Response Time at a Flow Rate of 0.19 ± 0.010 gal/hr	Recovery Time
Accuracy and Response Time				
Regular Unleaded Commercial Gasoline (6 tests)	100%	0.50 ± 0.02 in (1.27 ± 0.05 cm)	3.45 ± 0.11 min	< 1 min
Specificity		[1000/14		
Synthetic Fuel (3 tests)	100%	[100%]* 0.50 ± 0.02 in (1.27 ± 0.06 cm)	3.89 ± 0.09 min	< 1 min
Diesel Fuel (3 tests)	100%	[97%]* 0.49 ± 0.02 in (1.23 ± 0.06 cm)	3.70 ± 0.12 min	< 1 min
Home Heating Oil #2 (3 tests)	100%	[100%]* 0.50 ± 0.02 in (1.27 ± 0.06 cm)	3.78 ± 0.07 min	< 1 min
Water (3 tests)	100%	[92%]* 0.46 ± 0.02 in (1.17 ± 0.06 cm)	3.25 ± 0.19 min	< 1 min

Test Product Flow Rate: 0.19 ± 0.010 gal/hr.

* Specificity Reference: Regular Unleaded Commercial Gasoline

Test Fuel	Product Activation Height - Calculated Lower Detection Limit for 95% / 5% Condition
Regular Unleaded Commercial Gasoline	0.65 in (1.65 cm)

Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect the presence of liquid product. It does not test the equipment for safety hazards.

Certification of Results

I certify that the point sensor liquid contact product detector was operated according to the vendor's instructions and that the evaluation was performed according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹ I also certify that the results presented above are those obtained during the evaluation.

Margaret Nasta, Ph.D.
(printed name) Margaret Manta
(signaturé)
July 17, 1992
(date)

Carnegie Mellon Research Institute **
(organization performing evaluation)
Pittsburgh, PA 15213
(city, state, zip)
(412) 268-3475
(phone number)
** Consultant to the Manufacturer

Page 1 July 17, 1992

Test Procedures for Evaluating Leak Detection Methods: Liquid Contact Point Sensors - Out of Tank Product Detectors November 1991

Test Results for Veeder-Root UST Monitoring System: Model ILS 350 with Interstitial Liquid Sensor for Fiberglass Tanks 0794390-401 July 1992

Monitor: Veeder-Root UST Monitoring System: Model ILS 350 (serial # Beta 013)					
Probe Size	-	3.45 x 5.65 x 1.90 cm			
Test Chamber Diameter	=	7.6 cm			

The Detection System described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

• Detection Accuracy - The measure of sensor response to the presence of liquids.

• Response Time - Amount of time the detector must be exposed to liquid before it responds.

• Recovery Time - Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.

Lower Detection Limit - The smallest liquid concentration that the detector can reliably detect.

 Minimum Sensitive Height - The minimum sensor length required to be in contact with the liquid product to cause sensor activation.

Product Activation Height - The height of liquid to cause sensor activation.

• Specificity - Indicates the level of response, of the detector, to several different liquids.

Monitor =Veeder-Root UST Monitoring System: Model ILS 350Sensor =Interstitial liquid sensor for fiberglass tanks 0794390-401Probe Size = 3.45 ± 0.01 (W) X 5.65 ± 0.07 (L) X 1.90 ± 0.05 (H) cm

NA=not applicable NR=no response

Minimum Sensitive Height = 0.8 in (20 mm) + 20% = 24 mm

TEST PRODUCT = UNLEADED GASOLINE

Test Distance = 12 ft

Trial#	Probe#	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	31	21.0	3.67	< 1	1.3	12.5	46
2	31	21.0	3.43	< 1	1.2	12.8	44
3	31	21.0	3.42	< 1	1.3	12.6	43
4	31	21.0	3.35	< 1	1.2	12.8	43
5	31	21.0	3.42	< 1	1.3	12.9	44
6	31	21.0	3.40	<1	1.3	12.9	44
Average			3.45	<1	1.27	12.8	44
Std. Dev.			0.11	NA	0.05	0.2	1

Detection Accuracy (%)

100.0

Calculated Lower Detection Limit Product Activation Height (cm) 1.65

SPECIFICITY

Monitor =	Veeder-Root UST Monitoring System: Model ILS 350
Sensor =	Interstitial liquid sensor for fiberglass tanks 0794390-401
Probe Size =	3.45 ± 0.01 (W) X 5.65 ± 0.07 (L) X 1.90 ± 0.05 (H) cm

NA=not applicable NR=no response

Minimum Sensitive Height = 0.8 in (20 mm) + 20% = 24 mm

TEST PRODUCT = Water

Test Distance = 12 ft

Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	31	21.0	3.32	< 1	1.2	11.7	39
2	31	21.1	3.03	< 1	1.1	11.9	36
3	31	21.1	3.40	< 1	1.2	11.8	40
Average			3.25	<1	1.17	11.8	38
Std. Dev.			0.19	NA	0.06	0.1	2

Detection Accuracy (%)

100.0

92.1

Specificity Calculations Product Activation Height (%)

TEST PRODUCT = **HEATING OIL**

Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	31	21.7	3.70	< 1	1.2	11.4	42
2	31	21.7	3.80	<1	1.3	11.3	43
3	31	21.7	3.83	<1	1.3	11.0	42
Average			3.78	<1	1.27	11.2	42
Std. Dev.			0.07	NA	0.06	0.2	1
	Detection	Accurac	;y (%)	<u></u>	100.0		
	Specificity		ntions n Height (%		100.0		

SPECIFICITY (cont.)

Monitor =Veeder-Root UST Monitoring System: ModeSensor =Interstitial liquid sensor for fiberglass tanks 0Probe Size =3.45 ± 0.01 (W) X 5.65 ± 0.07 (L) X 1.90 ± 0.				tanks 07943	90-401	NA=not appli NR=no respo	
Minimum Sen	·	•	•••	·	•		
TEST PROD	-		LFUEL				
	001 =	DIESE					
Test Distance	= 12 ft						
		Liquid	Response	Recovery	Product		Liquid
Trial#	Probe #	Temp.	Time	Time	Activation	Flow Rate	Volume
		(°C)	(min)	(min)	Height (cm)	(ml/min.)	<u>(ml)</u>
11	31	22.6	3.83	< 1	1.3	11.5	44
2	31	22.6	3.68	< 1	1.2	11.1	41
3	31	22.7	3.60	< 1	1.2	11.7	42
Average 3.70 <1 1.23					11.4	42	
Std. Dev.			0.12	NA	0.06	0.3	2
	Specificity Calculations Product Activation Height (%) 97.4						
TEST PROD	UCT =	SYNTH	IETIC GA	SOLINE			
Test Distance	= 12 ft						
Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	31	20.6	3.80	< 1	1.2	12.37	47
2	31	20.5	3.98	< 1	1.3	12.06	48
3	31	20.5	3.88	< 1	1.3	11.86	46
Average			3.89	<1	1.27	12.1	47
Std. Dev.			0.09	NA	0.06	0.3	1
							
	Detection	Accurac	y (%)		100.0		
	Onecidiait	0-11-	A l a m a				
Specificity Calculations Product Activation Height (%) 100.0							

4400 Fifth Ave.

Results of Third Party Standard Evaluation Point Sensor Liquid Contact Product Detectors

This form documents the performance of the cable sensor liquid contact leak detection system described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description

Name	TLS-350/300/300i Series UST Monitoring System						
Version_	with Interstitial Liquid Ser	nsor for Steel	<u> Tanks (0794390-420</u>	<u>))</u>			
Vendor	/endorVeeder-Root Environmental Products						
	125 Powder Forest Drive			NAN			
	(street address)					
	Simsbury,	СТ	06070-2003	(800) 873-3313			
	(city)	(state)	(zip)	(phone)			
Detector	output type: <u>X</u> Qualita	tive					
Detector	operating principle:	Electrical Co	nductivityCap	acitance Change			
Interface ProbeProduct PermeableProduct SolubleThermal Conductivity							
Press	sure SwitchMagnetic	Switch X	Other <u>(Float Switc</u>	<u>h)</u>			
Detector	sampling frequency:l	ntermittent	<u>X</u> Continuous				

Evaluation Results

The detector described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

- Detection Accuracy The measure of sensor response to the presence of liquids.
- Response Time Amount of time the detector must be exposed to liquid before it responds.
- Recovery Time Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.
- Lower Detection Limit The smallest liquid concentration that the detector can reliably detect.
- Product Activation Height The height of liquid to cause sensor activation.
- Specificity Indicates the level of response, of the detector, to several different liquids.

¹ Carnegie Mellon Research Institute. <u>Test Procedures for Third Party Evaluation of Leak Detection Methods: Point</u> <u>Sensor Liquid Contact Leak Detection Systems</u>: Final Report - November 11, 1991.

Evaluation Results (continued) > Compiled Test Results for Qualitative Detector

	Detection Accuracy	Product Activation Height	Response Time at a Flow Rate of 0.12 ± 0.003 gal/hr	Recovery Time
<u>Accuracy and</u> <u>Response Time</u>				
Regular Unleaded Commercial Gasoline (6 tests)	100%	1.42 ± 0.03 in (3.62 ± 0.08 cm)	6.51 ± 0.06 min	< 1 min
Specificity				
Synthetic Fuel (3 tests)	100%	[104%]* 1.48 ± 0.02 in (3.77 ± 0.06 cm)	5.85 ± 0.11 min	< 1 min
Diesel Fuel (3 tests)	100%	[98%]* 1.39 ± 0.02 in (3.53 ± 0.06 cm)	5.81 ± 0.05 min	< 1 min
Home Heating Oil #2 (3 tests)	100%	[98%]* 1.39 ± 0.02 in (3.53 ± 0.06 cm)	5.88 ± 0.06 min	< 1 min
Water (3 tests)	100%	[87%]* 1.23 ± 0.02 in (3.13 ± 0.06 cm)	5.48 ± 0.04 min	< 1 min

Test Product Flow Rate: 0.12 ± 0.003 gal/hr.

* Specificity Reference: Regular Unleaded Commercial Gasoline

Test Fuel	Product Activation Height - Calculated Lower Detection Limit for 95% / 5% Condition		
Regular Unleaded Commercial Gasoline	1.64 in (4.17 cm)		

> Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect the presence of liquid product. It does not test the equipment for safety hazards.

Certification of Results

I certify that the point sensor liquid contact product detector was operated according to the vendor's instructions and that the evaluation was performed according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹ I also certify that the results presented above are those obtained during the evaluation.

Margaret Nasta, Ph.D.
(printed name)
(printed name) <u>Marcaret Masta</u> (signature)
(signature)
April 22, 1998

(date)

Carnegie Mellon Research Institute ** (organization performing evaluation)

Pittsburgh, PA 15230 (city, state, zip)

(412) 268-3475

(phone number) ** Consultant to the Manufacturer

Results of Third Party Standard Evaluation Point Sensor Liquid Contact Product Detectors

This form documents the performance of the cable sensor liquid contact leak detection system described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

				•		
Method	Description					
Name	350 Series UST Monitor	oring Systems:	Models ILS 350 (se	erial #Beta 013) & TLS 35		
Version_	with Interstitial Liquid Second	ensor for Steel	Tanks (0794390-420))		
Vendor_	Veeder-Root Environme	ntal Products	· · · · · · · · · · · · · · · · · · ·			
	125 Powder Forest Drive					
(street address)						
	Simsbury.	CT	06070-2003	(800) 873-3313		
	(city)	(state)	(zip)	(phone)		
Detector	output type: <u>X</u> Quali	tative				
Detector	operating principle:	_Electrical Co	nductivityCap	acitance Change		
Interf	ace ProbeProduct	Permeable	Product Soluble _	Thermal Conductivity		
Press	sure SwitchMagneti	c Switch <u>X</u>	Other(Float Swite	<u>h)</u>		
Detector	sampling frequency:	Intermittent	X_Continuous			

Evaluation Results

The detector described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

- Detection Accuracy The measure of sensor response to the presence of liquids.
- Response Time Amount of time the detector must be exposed to liquid before it responds.
- Recovery Time Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.
- Lower Detection Limit The smallest liquid concentration that the detector can reliably detect.
- Product Activation Height The height of liquid to cause sensor activation.
- Specificity Indicates the level of response, of the detector, to several different liquids.

¹ Carnegie Mellon Research Institute. <u>Test Procedures for Third Party Evaluation of Leak Detection Methods: Point</u> <u>Sensor Liquid Contact Leak Detection Systems</u>: Final Report - November 11, 1991.

Liquid Contact Product Detector UST Monitoring System: Models ILS 350 (Beta 013) & TLS 350 Version with Interstitial Liquid Sensor for Steel Tanks (0794390-420)

Evaluation Results (continued)

> Compiled Test Results for Qualitative Detector

	Detection Accuracy	Product Activation Height	Response Time at a Flow Rate of 0.12 ± 0.003 gal/hr	Recovery Time
Accuracy and Response Time				
Regular Unleaded Commercial Gasoline (6 tests)	100%	1.42 ± 0.03 in (3.62 ± 0.08 cm)	6.51 ± 0.06 min	< 1 min
Specificity				
Synthetic Fuel (3 tests)	100%	[104%]* 1.48 ± 0.02 in (3.77 ± 0.06 cm)	5.85 ± 0.11 min	< 1 min
Diesel Fuel (3 tests)	100%	[98%]* 1.39 ± 0.02 in (3.53 ± 0.06 cm)	5.81 ± 0.05 min	< 1 min
Home Heating Oil #2 (3 tests)	100%	[98%]* 1.39 ± 0.02 in (3.53 ± 0.06 cm)	5.88 ± 0.06 min	< 1 min
Water (3 tests)	100%	[87%]* 1.23 ± 0.02 in (3.13 ± 0.06 cm)	5.48 ± 0.04 min	< 1 min

Test Product Flow Rate: 0.12 ± 0.003 gal/hr.

* Specificity Reference: Regular Unleaded Commercial Gasoline

Test Fuel	Product Activation Height - Calculated Lower Detection Limit for 95% / 5% Condition
Regular Unleaded Commercial Gasoline	1.64 in (4.17 cm)

Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect the presence of liquid product. It does not test the equipment for safety hazards.

Certification of Results

I certify that the point sensor liquid contact product detector was operated according to the vendor's instructions and that the evaluation was performed according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹ I also certify that the results presented above are those obtained during the evaluation.

Margaret Nasta, Ph.D.	
(printed name)	
Margaret Masta	
(signature)	
July 17, 1992	
(date)	

Carnegie	Mellon	Research	Institute **	
(organization	perform	ing evaluatio	n)	

Pittsburgh, PA 15213 (city, state, zip)

uly, state, zip)

(412) 268-3475 (phone number)

** Consultant to the Manufacturer

Page 1 July 17, 1992

Test Procedures for Evaluating Leak Detection Methods: Liquid Contact Point Sensors - Out of Tank Product Detectors November 1991

Test Results for Veeder-Root UST Monitoring System: Model ILS 350 with Interstitial Liquid Sensor for Steel Tanks 0794390-420 July 1992

Monitor: Veeder-Root UST I	Monitorir	g System: Model ILS 350 (serial # Beta 013)
Probe Diameter	=	3.77 cm
Test Chamber Diameter	=	4.8 cm

The Detection System described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

Detection Accuracy - The measure of sensor response to the presence of liquids.

• Response Time - Amount of time the detector must be exposed to liquid before it responds.

 Recovery Time - Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.

· Lower Detection Limit - The smallest liquid concentration that the detector can reliably detect.

 Minimum Sensitive Height - The minimum sensor length required to be in contact with the liquid product to cause sensor activation.

• Product Activation Height - The height of liquid to cause sensor activation.

• Specificity - Indicates the level of response, of the detector, to several different liquids.

Monitor =Veeder-Root UST Monitoring System: Model ILS 350Sensor =Interstitial liquid sensor for steel tanks 0794390-420Probe Diameter = 3.77 cm; Std. Dev. = 0.01

NA=not applicable NR=no response

Minimum Sensitive Height = 1.6 in (40 mm) + 20% = 48 mm

TEST PRODUCT = UNLEADED GASOLINE

Test Distance = 16 ft

Trial#	Probe#	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	21	22.1	6.50	< 1	3.5	7.7	50
2	21	22.1	6.50	< 1	3.6	7.8	51
3	21	22.0	6.43	< 1	3.6	7.8	50
4	21	22.0	6.47	< 1	3.6	7.7	50
5	21	22.0	6.60	< 1	3.7	7.6	50
6	21	22.0	6.57	<1	3.7	7.8	51
Average			6.51	<1	3.62	7.7	50
Std. Dev.			0.06	NA	0.08	0.1	1

Detection Accuracy (%)

100.0

Calculated Lower Detection Limit
Product Activation Height (cm) 4.17

SPECIFICITY

Monitor =Veeder-Root UST Monitoring System: Model ILS 350Sensor =Interstitial liquid sensor for steel tanks 0794390-420Probe Diameter = 3.77 cm; Std. Dev. = 0.01

NA=not applicable NR=no response

Minimum Sensitive Height = 1.6 in (40 mm) + 20% = 48 mm

TEST PRODUCT = Water

Test Distance = 16 ft

Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	21	21.2	5.52	< 1	3.1	7.6	42
2	21	21.2	5.45	< 1	3.1	7.5	41
3	21	21.1	5.47	< 1	3.2	7.7	42
Average			5.48	<1	3.13	7.6	42
Std. Dev.			0.04	NA	0.06	0.1	1

Detection Accuracy (%)

100.0

Specificity Calculations
Product Activation Height (%)

86.6

TEST PRODUCT = HEATING OIL

Test Distanc	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	21	22.1	5.93	<1	3.5	7.6	45
2	21	21.9	5.82	<1	3.5	7.9	46
3	21	21.9	5.90	<1	3.6	7.8	46
Average			5.88	<1	3.53	7.8	46
Std. Dev.			0.06	NA	0.06	0.2	1
	Detection	Accurac	cy (%)		100.0		
Specificity Calculations Product Activation Height (%) 97.7							

4400 Fifth Ave.

SPECIFICITY (cont.)

Monitor =Veeder-Root UST Monitoring System: Model ILS 350Sensor =Interstitial liquid sensor for steel tanks 0794390-420Probe Diameter = 3.77 cm; Std. Dev. = 0.01

NA=not applicable NR=no response

Minimum Sensitive Height = 1.6 in (40 mm) + 20% = 48 mm

TEST PRODUCT = **DIESEL FUEL**

Test Distance = 16 ft

Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	21	24.1	5.87	< 1	3.5	7.8	46
2	21	24.3	5.80	< 1	3.6	7.9	46
3	21	23.9	5.77	< 1	3.5	8.0	46
Average			5.81	<1	3.53	7.9	46
Std. Dev.			0.05	NA	0.06	0.1	0

Detection Accuracy (%)

100.0

Specificity Calculations
Product Activation Height (%)

97.7

TEST PRODUCT = **SYNTHETIC GASOLINE**

Test Distance = 16 ft

Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	21	21.1	5.93	<1	3.8	8.1	48
2	21	21.1	5.90	< 1	3.8	8.1	48
3	21	21.2	5.73	< 1	3.7	8.0	46
Average			5.85	<1	3.77	8.1	47
Std. Dev.			0.11	NA	0.06	0.1	1

Detection Accuracy (%)

100.0

104.1

Specificity Calculations
Product Activation Height (%)

Carnegie Mellon Research Institute

Results of U.S. EPA Standard Evaluation Liquid-Phase Out-of-Tank Product Detectors

This form documents the performance of the liquid-phase product detector described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description	d Description						
Name350 Series UST Monitoring Systems: Models TLS-350 & ILS-350							
Version with Groundwater Sensor (Form #794380-621, -622, -624)							
VendorVeeder-Root Environmental Products							
<u>125 Powder Forest I</u> (street addr	- international and a second						
Simsbury		06070-2003	(203) 651-2700				
(city)	(state)	(zip)	(phone)				
Detector output type:QuantitativeX_Qualitative							
Detector operating principle: <u>X</u> Electrical ConductivityThermal Conductivity Interface ProbeProduct PermeableProduct SolubleOther							

Detector sampling frequency: ____Intermittent X Continuous

Evaluation Results

The detector described above was tested for its ability to detect a layer of liquid floating on water. The following parameters were determined:

Accuracy - How closely the product thickness, as measured by the detector, agrees with the actual thickness.

Bias - Whether the method consistently over-estimates or under-estimates product thickness. Not applicable to qualitative detectors.

Precision - Agreement between multiple measurements of the same product thickness. Not applicable to qualitative detectors.

Detection Time - Amount of time the detector must be exposed to product before it responds.

Fall Time - Amount of time that passes before the detector returns to its baseline reading after the product is removed.

Lower Detection Limit - The smallest liquid concentration that the detector can reliably detect. To meet federal performance standards, this must be less than 0.32 cm (1/8 inch).

Specificity - Indicates the accuracy of the detector in several different liquids.

Liquid-Phase Product Detector Models TLS-350 & ILS-350 with Version <u>Groundwater Sensor (Form #794380-621, -622, -624)</u>

Evaluation Results (continued)

> Compiled Test Results (for tests conducted with 0.32 cm of floating product)

Test	Commercial Gasoline	Synthetic Gasoline
Accuracy (%)	100	100
Bias* (%)	Not Applicable	Not Applicable
Precision* (%)	Not Applicable	Not Applicable
Detection Time (hh:mm:ss)	00:08:55	00:06:18
Fall Time (hh:mm:ss)	00:54:50	00:26:02
Lower Detection Limit (cm)	0.02	0.02

* Not applicable to qualitative detectors.

> Specificity Results (%)

Commercial gasoline	Activated
Synthetic gasoline	Activated
Diesel fuel	Activated
Jet -A jet fuel	Activated
<i>n</i> -Hexane	Activated
Toluene	Activated
Xylene(s)	Activated

> Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect leaks. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid-phase product detector was operated according to the vendor's instructions and that the evaluation was performed according to the standard EPA test procedure for liquid-phase out-of-tank product detectors except as noted on any attached sheets. I also certify that the results presented above are those obtained during the evaluation.

Marc Portnoff	
(printed name) Mare Partmy	
(signature)	
June 30, 1997	
(date)	

(date)

Carnegie Mellon Research Institute * (organization performing evaluation)

Pittsburgh, PA 15230

(city, state, zip)

412 - 268 - 3495 (phone number)

* Consultant to the Manufacturer

Results of U.S. EPA Standard Evaluation Vapor-Phase Out-of-Tank Product Detectors

This form documents the performance of the vapor-phase product detector described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Vapor-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description						
Name <u>350 Series UST Monitoring Systems:</u>						
Models ILS 350 & TLS 350						
Versionwith Adsistor Vapor Sen	sor (Form no	. 794390-700)				
Vendor Veeder-Root Environmental Products 125 Powder Forest Drive						
		(St	reet Address)			
Simsbury	СТ	06070-2003	(203) 651-2700			
(City)	(State)	(Zip)	(Phone)			
Detector output type:Quantitat	ive <u>X</u> Qu	alitative				
Detector operating principle:Me	etal Oxide S	emiconductor	<u>X</u> Adsistor Detector Tube			
Catalytic Gas SensorCombustible Gas DetectorPhotoionization Detector						
Product-Permeable Detector						
Detector sampling frequency:						

Evaluation Results

The detector described above was tested for its ability to detect known concentrations of test gas. The following parameters were determined:

Accuracy - How closely test gas concentration, as measured by the detector, agrees with the actual gas concentration.

Bias - Whether the method consistently over-estimates or under-estimates gas concentration. Not applicable to qualitative detectors.

Precision - Agreement between multiple measurements of the same gas concentration. Not applicable to qualitative detectors.

Detection Time - Amount of time the detector must be exposed to test gas before it responds.

Fall Time - Amount of time that passes before the detector returns to its baseline reading after test gas is removed.

Lower Detection Limit - The smallest gas concentration that the detector can reliably detect. Specificity - Indicates the ability of the detector to detect several different test gases.

¹ Radian Corporation. Development of Procedures to Assess the Performance of External Leak Detection Devices: Vapor-Phase ASTM-Formatted methods. Draft Report. EPA Contract No. 68-03-3409. Work Assignment 22. June 29,1990. [Gas concentrations levels were corrected for laboratory temperature and pressure.]

Vapor-Phase Product Detector <u>Model ILS 350 & TLS 350</u> Version with Adsistor Vapor Sensor (Form no. 794390-700)

Evaluation Results (continued) > Accuracy, Response Time, and Lower Detection Limit Results

Test	Commercial Gasoline	Synthetic Gasoline	JP-4 Jet Fuel
Accuracy* (%)	100	0	100
Bias* ◊ (%)	Not Applicable	Not Applicable	Not Applicable
Precision* ◊ (%)	Not Applicable	Not Applicable	Not Applicable
Detection Time* (hh:mm:ss)	00:07:46	Not Applicable	00:17:01
Fall Time* (hh:mm:ss)	00:02:38	Not Applicable	00:03:05
Lower Detection Limit (ppm)	500	> 1000	500

* For tests conducted with 1000 ppm of test gas ◊Not applicable to qualitative detectors.

> Specificity Results (%)

Commercial gasoline	Activated
Synthetic gasoline	No Response
JP-4 Jet Fuel	Activated
<i>n</i> -Hexane	No Response
Toluene	No Response
Xylene(s)	No Response

> Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect leaks. It does not test the equipment for safety hazards.

Certification of Results

I certify that the vapor-phase product detector was operated according to the vendor's instructions and that the evaluation was performed according to the standard EPA test procedure for vapor-phase out-of-tank product detectors except as noted on any attached sheets. I also certify that the results presented above are those obtained during the evaluation.

Marc Portnoff	
(printed name) More Protooff	
(signature)	
June 30, 1997	
(date)	

<u>Carnegie Mellon Research Institute *</u> (organization performing evaluation)

Pittsburgh, PA 15230

(city, state, zip) 412 - 268 - 3495

(phone number)

* Consultant to the Manufacturer

Vapor-Phase Product Detector - Results Form

Standard Test Procedures for Evaluating Leak Detection Methods: Vapor-Phase Out of Tank Product Detectors - June 1990

Complete Test Results for Veeder - Root UST Monitoring System Models TLS -350, ILS-350 with Adsistor Vapor Probe

July 1992

x0001 Standard Test Method for Accuracy and Response Time (*)

Test Gas	Concentration ppm	Accuracy %	Rise hr:min:sec	Fall hr:min:sec
Unleaded Gasoline	50	0	Not Applicable	Not Applicable
Unleaded Gasoline	500	100	0:20:39	0:02:20
Unleaded Gasoline	1000	100	0:07:46	0:02:38
Synthetic Gasoline	50			
Synthetic Gasoline	500			
Synthetic Gasoline	1000	0	Not Applicable	Not Applicable
JP-4 Jet Fuel	50	0	Not Applicable	Not Applicable
JP-4 Jet Fuel	500	100	0:17:27	0:03:50
JP-4 Jet Fuel	1000	100	0:17:01	0:03:05

(*) Average of Five Tests

x0003 Standard Test Method for Specificity (**)

Test Gas	Concentration ppm	Accuracy %	Rise hr:min:sec	Fall hr:min:sec
Unleaded Gasoline	500	100	0:16:42	0:02:00
n-Hexane	500	0	Not Applicable	Not Applicable
JP-4 Jet Fuel	500	100	0:33:58	0:03:22
Synthetic Gasoline	500	0	Not Applicable	Not Applicable
Toluene	500	0	Not Applicable	Not Applicable
Xylene	500	0	Not Applicable	Not Applicable

(**) Average of Two Tests

x0006 Standard Test Method for Lower Detection Limit (***)

Test Gas	Concentration ppm	Accuracy %	Rise hr:min:sec	Fall hr:min:sec
Unleaded Gasoline	500	100	0:19:33	0:02:16
Synthetic Gasoline	1000	0	Not Applicable	Not Applicable
JP-4 Jet Fuel	500	100	0:24:20	0:03:44
	(***) Average	of Six Tooto		

(***) Average of Six Tests

ILS -350 Monitoring System Serial # Beta 013: TLS -350 Monitoring System Serial # 11014666415001

Carnegie Mellon Research Institute

4400 Fifth Ave.

Standard Test Procedures for Evaluating Leak Detection Methods: Vapor-Phase Out of Tank Product Detectors - June 1990

Complete Test Results for Veeder - Root UST Monitoring System Models TLS -350, ILS-350 with Adsistor Vapor Probe

July 1992

x0001 Standard Test Method for Accuracy and Response Time

UNLEAD	ED GASO	LINE						
CHAMBER	=21°C		CHAMBER	=20°C		CHAMBER	= 20°C	
Conc.	Rise Time	Fall Time	Conc.	Rise Time	Fail Time	Conc.	Rise Time	Fall Time
(ppm)	(min)	(min)	(ppm)	(min)	(min)	(ppm)	(min)	(min)
50	NR	NR	500	22.17	2.30	1000	10.78	2.28
50	NR	NR	500	15.22	2.12	1000	7.28	2.92
50	NR	NR	500	20.70	2.97	1000	6.55	2.12
50	NR	NR	500	21.12	2.25	1000	7.57	2.92
50	NR	NR	500	24.08	2.02	1000	6.63	2.90
Average	NR	NR	Average	20.66	2.33	Average	7.76	2.63

SYNTHE	TIC GAS						·····	
						CHAMBER :	=20°C	
Conc.	Rise Time	Fall Time	Conc.	Rise Time	Fall Time	Conc.	Rise Time	Fall Time
(ppm)	(min)	(min)	(ppm)	(min)	(min)	(ppm)	(min)	(min)
50			500			1000	NR	NR
50			500			1000	NR	NR
50			500			1000	NR	NR
50			500			1000	NR	NR
50			500			1000	NR	NR
Average			Average			Average	NR	NR

JP-4 JET	FUEL							
CHAMBER	=22°C		CHAMBER	=22°C	1	CHAMBER	=21°C	
Conc. (ppm)	Rise Time (min)	Fail Time (min)	Conc. (ppm)	Rise Time (min)	Fali Time (min)	Conc. (ppm)	Rise Time (min)	Fall Time (min:sec)
50	NR	NR	500	36.02	4.42	1000	29.87	5.20
50	NR	NR	500	15.88	2.93	1000	24.43	4.22
50	NR	NR	500	17.80	4.32	1000	12.28	2.75
50	NR	NR	500	8.32	4.03	1000	10.22	1.90
50	NR	NR	500	9.22	3.45	1000	8.32	1.37
Average	NR	NR	Average	17.45	3.83	Average	17.02	3.09

Rise and Fall Time was based on when the buzzer alarmed and reset
NR: No Response after exposure for 1 hour
CHAMBER: Sensor Chamber Temperature

x0003 Standard Test Method for Specificity

UNLEADED GASOLINE

CHAMBER =21°C				
Conc. Rise Time Fall Tim				
(ppm)	(min)	(min)		
500	13.98	1.95		
500	19.40	2.05		
Average	16.69	2.00		

XYLENE CHAMBER =19°C Conc. **Rise Time** Fall Time (ppm) (min) (min) 500 NR NR 500 NR NR Average NR NR

SYNTHETIC GAS CHAMBER =19°C Conc. **Rise Time** Fall Time (ppm) (min) (min) NR NR 500 500 NR NR Average NR NR

n-HEXANE

CHAMBER =19°C				
Conc. (ppm)	Rise Time (min)	Fall Time (min)		
500	NR	NR		
500	NR	NR		
Average	NR	NR		

JP-4 JET FUEL CHAMBER =19°C				
Conc.	Rise Time	Fail Time		
(ppm)	(min)	(min)		
500	9.22	3.45		
500	58.72	3.28		
Average	33.97	3.37		

TOLUNE CHAMBER =21°C					
Conc. (ppm)	Rise Time (min)	Fall Time (min)			
500	NR	NR			
500	NR	NR			
Average	NR	NR			

x0006 Standard Test Method for Lower Detection Limit

UNLEADED GASOLINE					
CHAMBER :					
Conc.	Rise Time	Fall Time			
(ppm)	(min)	(min)			
500	22.17	2.30			
500	15.22	2.12			
500	20.70	2.97			
500	21.12	2.25			
500	24.08	2.02			
500	13.98	1.95			
Average	19.54	2.27			

SYNTHE CHAMBER		
Conc.	Rise Time	Fall Time
(ppm)	(min)	(min)
1000	NR	NR
Average	NR	NR

JP-4 JET FUEL CHAMBER =22°C					
Conc.	Rise Time	Fall Time			
(ppm)	(min)	(min)			
500	36.02	4.42			
500	15.88	2.93			
500	17.80	4.32			
500	8.32	4.03			
500	9.22	3.45			
500	58.72	3.28			
Average	24.33	3.74			

ILS -350 Monitoring System Serial # Beta 013 TLS -350 Monitoring System Serial # 11014666415001

Rise and Fall Time was based on when the buzzer alarmed and reset
NR: No Response after exposure for 1 hour
CHAMBER: Sensor Chamber Temperature

Results of Third Party Standard Evaluation Point Sensor Liquid Contact Product Detectors

This form documents the performance of the cable sensor liquid contact leak detection system described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to verify that this form satisfies their requirements.

Method Description Name UST Monitoring System: Model TLS 350 with Version Solid-State Discriminating Dispenser Pan (794380-320) and Containment Sump Sensors (794380-350) Veeder-Root Environmental Products Vendor 125 Powder Forest Drive (street address) (800) 873-3313 Simsbury, CT 06070-2003 (phone) (city) (state) (zip) Detector output type: <u>X</u> Qualitative Detector operating principle: <u>X</u> Electrical Conductivity ____Capacitance Change Interface Probe Product Permeable Product Soluble _____Thermal Conductivity Pressure Switch ____Magnetic Switch _X_Other _Ultrasonic___ Detector sampling frequency: Intermittent <u>X</u>Continuous

Evaluation Results

The detector described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

- Detection Accuracy The measure of sensor response to the presence of liquids.
- Response Time Amount of time the detector must be exposed to liquid before it responds. (see attached memo)
- Recovery Time Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.
- Lower Detection Limit The smallest liquid concentration that the detector can reliably detect.
- Product Activation Height The height of liquid to cause sensor activation.
- Specificity Indicates the level of response, of the detector, to several different liquids.

¹ Carnegie Mellon Research Institute. <u>Test Procedures for Third Party Evaluation of Leak Detection Methods: Point</u> <u>Sensor Liquid Contact Leak Detection Systems</u>: Final Report - November 11, 1991.

Version_Solid-State Discriminating Dispenser Pan (794380-320) and Containment Sump sensors (794380-350)

Evaluation Results (continued)

> Compiled Test Results for Qualitative Detector

Test Product Flow Rate: 0.17 ± .010 gal/hr.

	Detection Accuracy	Product Activation Height	Response Time at a Flow Rate of 0.17 ± .010 gal/hr	Recovery Time		
Accuracy and Response Time Regular Unleaded Commercial Gasoline (6 tests)	100%	1.34 ± 0.05 in (3.40 ± 0.13 cm)	6.59 ± 0.22 min	17.17 ± 2.32		
Water - Low Level Alarm (6 tests)	100%	[72.0%]* 0.96 ± 0.00 in (2.45 ± 0.01 cm)	4.60 ± 0.13 min	less than 1 min.		
Water - High Level Alarm (6 tests)	100%	7.98 ± 0.01 in (20.3 ± 0.0 cm)	5.00 ± 0.14 min	less than 1 min.		
Specificity Synthetic Fuel (3 tests)	100%	[76.0%]* 1.02 ± 0.03 in (2.58 ± 0.09 cm)	6.02 ± 0.14 min	greater than 1 hour		
Diesel Fuel (3 tests)	100%	[139.7%]* 1.87 ± 0.00 in (4.75 ± 0.00 cm)	44.13 ± 3.52 min	not applicable		
Home Heating Oil #2 100% (3 tests)		[137.3%]* 1.84±0.01 in (4.67±0.03 cm)	44.28 ± 0.40 min	not applicable		

* Specificity Reference: Regular Unleaded Commercial Gasoline

Test Fuel	Product Activation Height - Calculated Lower Detection Limit for 95% / 5% Condition
Regular Unleaded Commercial Gasoline	0.18 in (0.47 cm)
Water	0.99 in (2.51 cm)

Safety disclaimer: This test procedure only addresses the issue of the method's ability to detect the presence of liquid product. It does not test the equipment for safety hazards.

Certification of Results

I certify that the point sensor liquid contact product detector was operated according to the vendor's instructions and that the evaluation was performed according to the Third Party Procedures developed according to the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Liquid-Phase Out-of-Tank Product Detectors."¹ I also certify that the results presented above are those obtained during the evaluation.

Marc Portnoff
(printed name)
Marc Portrul
(signature)
June 30, 1997
(date)

Carnegie Mellon Research Institute **
(organization performing evaluation)
Pittsburgh, PA 15230
(city, state, zip)

(412) 268-3495

(phone number)

** Consultant to the Manufacturer

Test Procedures for Evaluating Leak Detection Methods: Liquid Contact Point Sensors - Out of Tank Product Detectors November 1991

Test Results for Veeder-Root UST Monitoring System: Model TLS 350 with Dispenser Pan Sensor May 1993

Monitor: TLS 350 UST Monitoring	System		
Dispenser Pan Sensor Diameter	-		5.4 cm
Test Chamber Diameter		=	6.0 cm

The Detection System described above was tested for its ability to detect test liquids in contact with the point sensor. The following parameters were determined:

• Detection Accuracy - The measure of sensor response to the presence of liquids.

Response Time - Amount of time the detector must be exposed to liquid before it responds.

• Recovery Time (*) - Amount of time that passes before the detector returns to its baseline reading after the test liquid is removed.

Lower Detection Limit - The smallest liquid concentration that the detector can reliably detect.

 Minimum Sensitive Height - The minimum sensor length required to be in contact with the liquid product to cause sensor activation.

Product Activation Height - The height of liquid to cause sensor activation.

Specificity - Indicates the level of response, of the detector, to several different liquids.

• Designated Starting Point - The initial fluid height. For the testing the upper alarm it was set at 7 inches.

* After a sensor alarmed, the sensor was allowed to air dry per manufacturer's instructions. For either diesel fuel or home heating oil, after a sensor alarmed, the sensor was soaked in coleman fuel for 30 minutes and then allowed to air dry per manufacturer's instructions.

Monitor =	Veeder-Root TLS-350		
Sensor =	Dispenser Pan Sensor		
Probe Diameter =	$5.417 \pm 0.016 \text{ cm}$; $\alpha = 0.05$		

NA=not applicable NR=no response

Minimum Sensitive Height = 1 in (25 mm) + 20% = 30 mm

TEST PRODUCT = UNLEADED GASOLINE

Test Distance = 5 ft

Trial#	Probe#	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	1	20.5	6.70	15.0	3.50	11.5	77.0
2	2	21.4	6.25	14.0	3.30	11.7	73.0
3	3	20.9	6.52	17.0	3.30	11.5	75.0
4	4	21.0	6.53	20.0	3.30	11.3	74.0
5	5	21.9	6.90	19.0	3.60	11.3	78.0
6	1	19.9	6.65	18.0	3.40	11.1	74.0
Average			6.59	17.17	3.40	11.4	75
Std. Dev.			0.22	2.32	0.13	0.2	2

Detection Accuracy (%)

LOWER DETECTION LIMIT

TEST	PRODUCT	[=]
------	---------	-------

UNLEADED GASOLINE

Test Distance = 5 ft

		Liquid	Response	Recovery	Product		Liquid
Trial#	Probe#	Temp.	Time	Time	Activation	Flow Rate	Volume
		(°C)	(min)	(min)	Height (cm)	(ml/min.)	(ml)
1	2	25.8	6.03	10	0.47	11.1	10.5
2	3	25.6	6.47	12	0.47	11.1	12.0
3	5	24.7	6.18	10	0.47	12.0	11.0
4	6	25,1	6.18	31	0.47	10.6	15.0
5	1	25.0	3.97	23	0.47	12.0	9.0
6	3	24.7	4.27	9	0.47	10.7	10.0
Average			5.52	15.83	0.47	11.2	11
Std. Dev.			1.10	9.06	0.00	0.6	2

Detection Accuracy (%)

100.0

0.47

100.0

Calculated Lower Detection Limit Product Activation Height (cm)

Carnegie Mellon Research Institute

Low Level Alarm

Monitor =Veeder-Root TLS-350Sensor =Dispenser Pan SensorProbe Diameter = 5.417 ± 0.016 cm ; $\alpha = 0.05$

NA=not applicable NR=no response

Minimum Sensitive Height = 1 in (25 mm) + 20% = 30 mm

TEST PRODUCT = Water

Test Distance = 5 ft

I COL DISLUIIO							
Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	1	24.2	4.62	<1	2.45	11.8	54.5
2	1	24.8	4.55	<1	2.45	11.3	51.3
3	1	24.6	4.42	<1	2.43	11.8	52.0
4	1	25.0	4.72	<1	2.45	11.1	52.2
5	1	24.9	4.52	<1	2.45	11.1	50.3
6	1	24.8	4.78	<1	2.45	11.2	53.8
Average			4.60	<1	2.45	11.4	52
Std. Dev.			0.13	NA	0.01	0.3	2

Detection Accuracy (%) 100.0

Calculated Lower Detection Limit
Product Activation Height (cm) 2.51

SPECIFICITY

Specificity Calculations
Product Activation Height (%)

72.0

High Level AlarmMonitor =Veeder-Root TLS-350Sensor =Dispenser Pan SensorProbe Diameter = 5.417 ± 0.016 cm ; $\alpha = 0.05$

NA=not applicable NR=no response

Minimum Sensitive Height = 8 in (20.3 cm) + 20% = 34.4 cm

TEST PRODUCT = Water

Test Distance = 5 ft

Trial#	Probe #	Temp. (°C)	Time (*) (min)	Time (min)	Activation Height (cm)	Flow Rate (ml/min.)	Volume (ml)
1	1	24.7	4.82	<1	20.3	10.0	48.0
2	1	24.6	5.02	<1	20.3	9.9	49.5
3	1	24.7	5.23	<1	20.3	9.7	51.0
4	1	24.8	5.07	<1	20.3	9.7	49.0
5	1	24.6	4.97	<1	20.3	9.8	48.5
6	1	24.5	4.90	<1	20.3	10.2	50.0
Average			5.00	<1	20.3	9.9	49
Std. Dev.			0.14	NA	0.0	0.2	1

Detection Accuracy (%)

100.0

(*) For this series of tests, the designated starting point was 7 inches.

SPECIFICITY

Minimum Sensitive Height = 1 in (25 mm) + 20% = 30 mm

TEST PRODUCT = SYNTHETIC GASOLINE

Test Distanc	e = 5 ft						
Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)
1	1	24.4	5.93	19	2.5	9.9	59
2	2	23.9	5.93	>60	2.6	10.1	60
3	3	23.7	6.18	>60	2.7	10.9	67.7
Average			6.02	NA	2.58	10.3	62
Std. Dev.			0.14	NA	0.09	0.5	5
	Detection	Accurac	cy (%)		100.0		

SPECIFICITY (cont.)

Monitor =	Veeder-Root TLS-350			
Sensor =	Dispenser Pan Sensor			
Probe Diameter =	$5.417 \pm 0.016 \text{ cm}$; $\alpha = 0.05$			

NA=not applicable NR=no response

Minimum Sensitive Height = 1 in (25 mm) + 20% = 30 mm

TEST PRODUCT = DIESEL FUEL

Test Distance = 5 ft

		Liquid	Response	Recovery	Product		Liquid
Trial#	Probe #	Temp.	Time	Time	Activation	Flow Rate	Volume
		(°C)	(min)	(min)	Height (cm)	(ml/min.)	(ml)
1	5	24.4	40.48	NA	4.75	10.1	100
2	6	24.1	44.38	NA	4.75	10.0	100
3	2	24.4	47.52	NA	4.75	10.1	100
Average		•	44.13	NA	4.75	10.0	100
Std. Dev.			3.52	NA	0.00	0.1	0

Detection Accuracy (%)

100.0

137.3

Specificity Calculations
Product Activation Height (%) 139.7

TEST PRODUCT = HEATING OIL

Test Distance = 5 ft

Detection Accuracy (%) 100.0							
Std. Dev.			0.40	NA	0.03	0.1	0
Average			44.28	NA	4.67	11.0	100
3	3	23.3	44.68	NA	4.70	10.9	100
2	2	24.1	43.88	NA	4.65	11.0	100
1	1	23.1	44.27	NA	4.65	11.1	100
Trial#	Probe #	Liquid Temp. (°C)	Response Time (min)	Recovery Time (min)	Product Activation Height (cm)	Flow Rate (ml/min.)	Liquid Volume (ml)

Product Activation Height (%)

Results of U.S. EPA Alternative Evaluation Liquid Level Sensor

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Discriminating Interstitial Sensor (Used in a non-discriminating mode)

Version numbe	er(s) <u>794380-34</u>	11		
Vendor <u>Veede</u> (Name	r-Root e of Manufacturer)			
125 Powder Fo (Address)	orest Drive, P.o	<u>D. Box 2003</u>		
Simsbury,	СТ	06070-7684	(860) 651-2700	
(City)	(State)	(Zip Code)	(Phone)	

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

Specificity - Types of products that the sensor will respond to.

Sensor Name: Discriminating Interstitial Sensor (Used in a non-discriminating mode) Version Number(s): <u>794380-341</u>

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

		Product					
Parameter	Water	Gasoline	Diesel				
Threshold - Lower Detection Limit (inches)	< 0.125	< 0.125	< 0.125				
Precision - Standard Deviation (inches)	N/A*	N/A*	N/A*				
Detection Time (minutes)	< 1	< 1	< 1				
Fall Time (minutes)	< 1	< 1	< 1				

* Sensor was tested for its ability to alarm below 0.125 inches.

Specificity -<u>This sensor will respond to any liquid after its threshold is exceeded.</u>

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox, Ph.D., President (printed name)

H. Kendall allook

(signature)

November 1, 2000 (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

<u>Grain Valley, MO 64029</u> (city, state, zip)

(816) 443-2494 (phone number)

Liquid Level Sensor - Results Form

Results of U.S. EPA Alternative Evaluation Liquid Level Sensor

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Hydrostatic Brine Sensor

Version number(s) 794380-301 Single point and 794380-303 Dual point sensors for

use with the TLS-350 Series, TLS-300 Series, EMC Series, EMC Basic, Red Jacket

ProMax and Red Jacket ProPlus

Vendor Veeder-Root (Name of Manufacturer)							
125 Powder Fores (Address)	<u>st Drive, P.(</u>	D. Box 2003					
<u>Simsbury,</u> (City)	CT (State)	06070-7684 (Zip Code)	(860) 651-2700 (Phone)				

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold Levels</u> – The liquid levels at which alarms are triggered.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

<u>Specificity</u> - Types of products that the sensor will respond to.

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Parameter	
Threshold Level (inches)	1.74
Precision - Standard Deviation (inches)	0.006
Detection Time (minute)	< 1
Fall Time (minute)	<1

Table 2. Results of the Evaluation for the Dual [pomt Sensor 794380-303]

Parameter	Low Level	High Level
Alarm Level (inches)	1.20	13.13
Precision - Standard Deviation (inches)	0.003	0.007
Detection Time (minute)	< 1	< 1
Fall Time (minute)	< 1	< 1

Specificity – <u>This sensor will respond to any liquid after its threshold is exceeded.</u> <u>This testing was specifically for performance in brine</u>

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox, Ph.D., President (printed name) Ken Wilcox Associates, Inc. (organization performing evaluation)

H.Kendall Wlook

(signature)

<u>Grain Valley, MO 64029</u> (city, state, zip)

February 3, 2003 (date)

Laboratory Data

Veeder Root Hydrostatic Brine Sensor Data

	Low Level	Low Level	High Level	High Level
Test #	ML Added	Alarm (in)	ML Added	Alarm (in)
1	162	1.187	1581	13.11
2	163	1.195	1580	13.10
3	162	1.187	1580	13.10
4	162	1.187	1580	13.10
5	162	1.187	1579	13.09
6	162	1.187	1579	13.09
Stdev		0.003		0.007
Mean		1.189		13.097
Threshold		1.20		13.13

Dual Point Sensor 794380-303

Single Point Sensor 794380-301

	Low Level	Low Level	
Test #	ML Added	Alarm (in)	
1	234	1.715	
2	234	1.715	
3	233	1.708	
4	234	1.715	
5	233	1.708	
6	232	1.701	
Stdev		0.006	
Mean		1.710	
Threshold		1.74	

Modified Procedure Results of U.S. EPA Standard Evaluation Liquid-Phase Product Detectors

This form documents the performance of the liquid-phase product detector described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's "Standard Test Procedure for Evaluation Leak Detection Methods: Liquid-Phase Out-of-tank Liquid Product Detectors". The modifications to the procedure were made to accommodate the specialized requirements of interstitial monitors.

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with State and local agencies to make sure this form satisfies their requirements.

Method Description

Name <u>Discrimi</u>	nating Dispenser	Pan Sensor; Containn	nent Sump Sensor	
Version number	r <u>TLS-350/300/3</u>	00i Series Consoles w	ith Sensor Models: 794380-32	2;
794380-352				
Vendor <u>Veeder</u>	Root Environme	ntal Products		
125 Powder For (street address)	rest Drive, P.O.	Box 2003		
Simsbury,	СТ	06070-2003	(203) 651-2700	
(city)	(state)	(zip)	(phone)	
Detector output	type: ()Quanti	tative (x) Qualitative	
-		•	() Thermal Conductivity ()) Other reed switch/float	Interface

Evaluation Results

The detectors listed above were tested for their ability to detect a layer of liquid (hydrocarbon or water) in a tank or a sump. The following parameters were determined:

Lower Detection Limit - The smallest product thickness that the detector can reliably detect.

Specificity - Whether or not the sensor responds to various products.

Detector sampling frequency: () Intermittent (X) Continuous

Precision - Agreement between multiple measurements of the same product level

Detection Time - Amount of time the detector must be exposed to product before it responds.

Evaluation Results (continued)

> Compiled Test Results (for tests conducted at the lower detection limit)

<u>Test</u>	Gasoline	<u>Water</u>	Diesel
Probability of Detection	100	100	100
Probability of False Alarm	0	0	0
Accuracy (%)	100	100	100
Bias	N/A	N/A	N/A
Precision (%)	*	*	*
Detection Time (hh:mm:ss)	< 00:00:01	<00:00:01	<00:00:01
Lower Detection Limit (in)	*	*	*

* SEE ATTACHED TABLES

Specificity Results (%)**

Commercial gasoline	100
Synthetic gasoline	100
Diesel fuel	100
Jet-A jet fuel	100
n-Hexane	100
Toluene	100
Xylene(s)	100
Water	100/ 0**

** The sensors will respond to any liquid except for the polymer strip sensor which will not respond to water.

> Safety disclaimer: This test procedure only addresses the issue of the interstitial monitors ability to detect leaks. It does not test the equipment for safety hazards.

Certification of Results

I certify that the interstitial monitor was installed and operated according to the vendor's instructions and that the results presented on this form are those obtained during the evaluation. I also certify that the evaluation was performed using the procedures described in the modified test protocol.

H. Kendall Wilcox, Ph.D., President	
(printed name)	

dall Weco

(signature)

<u>January 2, 1995 (Revision Dates:</u> <u>April 20, 1998; June 23, 1997)</u> (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, Missouri 64029 (city, state, zip)

Test Results for the Veeder Root Discriminating Pan Sensor (Model Number: 794380-322)

-	High Level	Low Level
	Water	Water
Run	Height to	Height to
No.	Alarm (in)	Alarm (in)
1	12.243	1.353
2	12.259	1.337
3	12.254	1.337
4	12.249	1.337
5	12.254	1.332
6	12.254	1.343
Mean (in)	12.252	1.340
Accuracy	100	100
Threshold (in)	12.276	1.372
Precision (Std Dev)	0.005492	0.007333
Detection Time	< 1 second	< 1 second
Fall Time	< 1 second	< 1 second

Float Switches

Polymer Strip

Product			
Water	Unleaded Gasoline	Diesel	
Height to	Height to	Height to	
Alarm (in)	Alarm (in)	Alarm (in)	
No Response	0.005	0.005	
No Response	0.005	0.005	
No Response	0.005	0.005	
No Response	0.005	0.005	
No Response	0.005	0.005	
No Response	0.005	0.005	
	Height toAlarm (in)No ResponseNo ResponseNo ResponseNo ResponseNo ResponseNo Response	Height to Alarm (in)Height to Alarm (in)No Response0.005No Response0.005No Response0.005No Response0.005No Response0.005No Response0.005	

	0.005	0.005
Accuracy	100	100
Threshold (in)	0.005	0.005
Precision (Std Dev)	N/A	N/A
Detection Time	Approx. 10 min.	2 - 12 hrs
Fall Time	N/A	N/A

Test Results for the Discriminating Dispenser Pan and Containment Sump Sensors (Model Number: 794380-352)

	High Level	Low Level
	Water	Water
Run	Height to	Height to
No.	Alarm (in)	Alarm (in)
1	7.622	1.312
2	7.637	1.332
3	7.632	1.322
4	7.632	1.317
5	7.637	1.322
6	7.632	1.322
Mean (in)	7.632	1.321
Accuracy	100	100
Threshold (in)	7.656	1.351
Precision (Std Dev)	0.005477	0.006646
Detection Time	< 1 second	< 1 second
Fall Time	< 1 second	< 1 second

Float Switches

Polymer Strip

Detection Time

Fall Time

	Product			
	Water	Unleaded Gasoline	Diesel	
Run	Height to	Height to	Height to	
No.	Alarm (in)	Alarm (in)	Alarm (in)	
1	No Response	0.005	0.005	
2	No Response	0.005	0.005	
3	No Response	0.005	0.005	
4	No Response	0.005	0.005	
5	No Response	0.005	0.005	
6	No Response	0.005	0.005	
Mean (in)		0.005	0.005	
Accuracy		100	100	
Threshold (in)		0.005	0.005	
Precision (Std Dev)		N/A	N/A	

Approx. 10 min.

N/A

2 - 12 hrs

N/A

Modified Procedure Results of U.S. EPA Standard Evaluation Liquid-Phase Product Detectors

This form documents the performance of the liquid-phase product detector described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's "Standard Test Procedure for Evaluation Leak Detection Methods: Liquid-Phase Out-of-tank Liquid Product Detectors". The modifications to the procedure were made to accommodate the specialized requirements of interstitial monitors.

Tank owners using this leak detection system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with State and local agencies to make sure this form satisfies their requirements.

Method Description

Name Solid-State Dispenser Pan/Containment Sump Sensors; Piping Sump Sensors;

Micro Sensor

Version number TLS-350/300/300i Series Consoles with Sensor Models: 794380-321;

794380-351;

<u>794380-208; 794380-209; 794380-340</u>

Vendor Veeder Root Environmental Products

 125 Powder Forest Drive, P.O. Box 2003

 (street address)

 Simsbury,
 CT
 06070-2003
 (203) 651-2700

 (city)
 (state)
 (zip)
 (phone)

Detector output type: () Quantitative

(x) Qualitative

Detector operating principle: ()Electrical Conductivity () Thermal Conductivity () Interface Probe () Product Permeable () Product Soluble (x) Other <u>Ultrasonic and Float Switch</u> Detector sampling frequency: () Intermittent (x) Continuous

Evaluation Results

The detectors listed above were tested for their ability to detect a layer of liquid (hydrocarbon or water) in a tank or a sump. The following parameters were determined:

<u>Minimum Detectable Product Thickness</u> - The smallest product thickness that the detector can reliably detect.

Precision - Agreement between multiple measurements of the same product level.

Detection Time - Amount of time the detector must be exposed to product before it responds.

<u>Specificity</u> - Whether or not the sensor responds to various products.

Liquid-Phase Product Detector <u>Solid-State Dispenser Pan/Containment Sump Sensors;</u> <u>Piping Sump Sensors; Micro Sensor</u>

Version number <u>TLS-350/300/300i Series Consoles with Sensor Models: 794380-321;</u> 794380-351; 794380-208; 794380-209; 794380-340

Evaluation Results (continued)

> Compiled Test Results

Solid-State Dispenser Pan/Containment Sump Sensors (Float Switch)

Probe Model	794380-321/351			
Product Type	Gasoline	Diesel	Water	
Minimum Detectable Product Thickness (in)	1.022	0.983	1.022	
Precision	0.010	0.010	0.010	
Detection Time (hh:mm:ss)	<00:00:01	<00:00:01	<00:00:01	

Piping Sump Sensors (Float Switch)

Probe Model	7	<mark>/94380-208/20</mark> 9)
Product Type	Gasoline	Diesel	Water
Minimum Detectable Product Thickness (in)	1.380	1.339	1.193
Precision	0.011	0.011	0.011
Detection Time (hh:mm:ss)	< 00:00:01	< 00:00:01	< 00:00:01

Micro Sensor (Ultrasonic)

Product Sensitive Sensor (liquid)

Probe Model	7		
Product Type	Gasoline	Diesel	Water
Minimum Detectable Product Thickness (in)	0.200	0.180	0.189
Precision	0.011	0.007	0.007
Detection Time (hh:mm:ss)	< 00:00:01	<00:00:01	< 00:00:01

> Specificity Results (%)*

Commercial gasoline	100
Diesel fuel	100
Water	100

* These probes are designed to alarm in the presence of any liquid that exceeds the threshold level.

Liquid-Phase Product Detector - Modified Results Form

Liquid-Phase Product Detector <u>Solid-State Dispenser Pan/Containment Sump Sensors;</u> <u>Piping Sump Sensors; Micro Sensor</u> Version number <u>TLS-350/300/300i Series Consoles with Sensor Models: 794380-321;</u>

794380-351; 794380-208; 794380-209; 794380-340

> Safety disclaimer: This test procedure only addresses the issue of the interstitial monitors ability to detect leaks. It does not test the equipment for safety hazards.

Certification of Results

I certify that the interstitial monitor was installed and operated according to the vendor's instructions and that the results presented on this form are those obtained during the evaluation. I also certify that the evaluation was performed using the procedures described in the modified test protocol.

dall (

(signature)

November 20, 1994 (Revision Dates: April 20, 1998; June 23, 1997) (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, Missouri 64029 (city, state, zip)

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Position-Sensitive Sensor

Version number(s) 794380-323 Position-Sensitive Single Point Sensor for use with

the TLS-350 Series, TLS-300 Series, EMC Series, EMC Basic, Red Jacket ProMax,

ILS-350 and Red Jacket ProPlus

Vendor Veeder-Root (Name of Manufacturer)				
125 Powder Forest Drive, P.O. Box 2003 (Address)				
<u>Simsbury,</u> (City)	CT (State)	06070-7684 (Zip Code)	(860) 651-2700 (Phone)	

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold Levels</u> – The liquid levels at which alarms are triggered.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

<u>Specificity</u> - Types of products that the sensor will respond to.

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation for the Position-Sensitive Sensor 794380-323

Parameter	Water	Diesel Fuel	Gasoline	E85
Alarm Level (inches)	1.359	1.449	1.520	1.479
Precision - Standard Deviation (inches)	0.0408	0.00376	0.00377	0.00450
Detection Time (minute)	< 1	< 1	< 1	< 1
Fall Time (minute)	< 1	< 1	< 1	< 1

Specificity – <u>This sensor will respond to any liquid after its threshold is exceeded.</u> This testing included water, diesel fuel, gasoline and E85.

Additional Limitations or Considerations - <u>Sensor alarms if it is raised from the bottom</u> of the containment vessel.

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox, Ph.D., President (printed name)

H. Kendall (lleok

(signature)

<u>April 7, 2003 (Rev. Jan 31, 2006)</u> (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

<u>Grain Valley, MO 64029</u> (city, state, zip)

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Discriminating Interstitial Sensor

Version number(s) 794380-343 for use with the TLS Series 350/350R/Simplicity/PC

Monitoring System.

P.O. Box 2003	 ,,, _,
)
	06070-7684 (860) 651-2700

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

Fall Time - Amount of time before the detector stops responding after being removed from the product.

Specificity - Types of products that the sensor will respond to.

Liquid Level Sensor - Results Form

н

Sensor Name: Discriminating Interstitial Sensor Version Number(s): <u>794380-343</u>

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

	Product		
Parameter	Water	Gasoline	Diesel
Threshold - Lower Detection Limit (inches)	< 0.1	< 0.1	< 0.1
Precision - Standard Deviation (inches)	N/A*	N/A*	N/A*
Detection Time (minute)	< 1	< 1	< 1
Fall Time (minute)	< 1	< 1	< 1

* Sensor was tested for its ability to alarm below 0.100 inches.

Specificity -<u>This sensor will respond to any liquid after its threshold is exceeded.</u> The sensor is designed to discriminate between fuel and water. Separate fuel and water alarms are triggered depending on if the alarm is caused by fuel or water.

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

<u>H. Kendall Wilcox, Ph.D., President</u> (printed name)

H. Kendall Wlook

(signature)

<u>May 10, 2001</u> (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

<u>Grain Valley, MO 64029</u> (city, state, zip)

(816) 443-2494 (phone number)

Liquid Level Sensor - Results Form

Page 2 of 2

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name MicroSensor

Version number(s) 794380-344 for use with the TLS Series 350/350R/PC, EMC

Series, and Red Jacket Promax

Monitoring System.

Vendor Veeder-Root (Name of Manufacturer)				
125 Powder Forest (Address)	Drive, P.O. E	3ox 2003		
Simsbury,	СТ	06070-7684	(860) 651-2700	
(City)	(State)	(Zip Code)	(Phone)	

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

<u>Specificity</u> - Types of products that the sensor will respond to.

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

		Proc	luct	
Parameter	Water	Gasoline	Diesel	E85
Threshold - Lower Detection Limit (inches)	< 0.1	< 0.1	< 0.1	< 0.1
Precision - Standard Deviation (inches)	N/A*	N/A*	N/A*	N/A*
Detection Time (minute)	< 1	< 1	< 1	< 1
Fall Time (minute)	< 1	< 1	< 1	< 1

* Sensor was tested for its ability to alarm below 0.1 inches.

Specificity -This sensor will respond to any liquid after its threshold is exceeded.

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox, Ph.D., President (printed name)

H.Kandall (allook

(signature)

<u>May 10, 2001 (Rev. Feb 2, 2006)</u> (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, MO 64029 (city, state, zip)

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Mag Sump Sensor

Version number(s)	Form no. 857080-xxx For use with TLS-350 series,	EMC,	EMC-
()			

PC, EMC Enhanced, EMC-PC Enhanced, Red Jacket ProMax

	er-Root			
125 Powder Fore (Address)	<u>est Drive, P.O</u>	. Box 2003		
<u>Simsbury,</u> (City)	CT(State)	06070 (Zip Code)	(860) 651-2700 (Phone)	
(Oity)	(State)			

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

Fall Time - Amount of time before the detector stops responding after being removed from the product.

Specificity - Types of products that the sensor will respond to.

Sensor Name: <u>Mag Sump Sensor</u> Version Number(s): <u>Form no. 857080-xxx For use with TLS-350 series, EMC</u>,

EMC-PC, EMC Enhanced, EMC-PC Enhanced, Red Jacket ProMax

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

(See Attached Table for test data.)

Specificity - <u>This is a discriminating sensor. A water warning is produced first followed</u> by a water alarm. If fuel is present, it will alarm either by itself or floating on top of any water that is present in the sump.

Additional Limitations or Considerations – None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

<u>H. Kendall Wilcox, Ph.D., President</u> (printed name)

H. Kandall (illeox

(signature)

<u>May 17, 2004 (Revised 5/26/05)</u> (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, MO 64029 (city, state, zip)

<u>(816) 443-2494</u>

(phone number)

Version Number(s): Form no. 857080-xxx For use with TLS-350 series, EMC, EMC-

PC, EMC Enhanced, EMC-PC Enhanced, Red Jacket ProMax

Test Data for Veeder Root Mag Sump Sensor

24" Sump Sensor

Water Only

Water Alarm

Run #	Alarm Height (in)
1	1.640
2	1.640
3	1.609
4	1.609
5	1.599
6	1.589
Mean	1.614
Stdev	0.021254852
Threshold	1.666
Detection Time	~ 10 sec
Fall Time	~ 10 sec

Gasoline Only Fuel Alarm

Run #	Alarm Height (in)
1	1.374
2	1.374
3	1.394
4	1.394
5	1.312
6	1.363
Mean	1.368
Stdev	0.030233156
Threshold Detection	1.441
Time	~ 10 sec
Fall Time	~ 10 sec

Diesel Only Fuel Alarm

Run #	Alarm Height (in)
1	1.363
2	1.271
3	1.271
4	1.353
5	1.358
6	1.358
Mean	1.329
Stdev	0.045107764
Threshold	1.438
Detection Time Fall Time	~ 10 sec ~ 10 sec

Gas on 7" Water Fuel Alarm with Water

Run #	Alarm Height (in)	
1	1.076	
2	1.122	
3	1.128	
4	1.112	
5	1.122	
6	1.138	
Mean	1.116	
Stdev	0.02135758	
Threshold	1.168	
Detection Time	~ 10 sec	
Fall Time	~ 10 sec	

Diesel on 7" Water Fuel Alarm with Water

Run #	Alarm Height (in)	
1	1.056	
2	1.107	
3	1.138	
4	1.102	
5	1.117	
6	1.087	
Mean	1.101	
Stdev	0.027961404	
Threshold	1.169	
Detection Time	~ 10 sec	
Fall Time	~ 10 sec	

Explanation of Table

This discriminating sensor can identify whether an alarm is due to water or fuel. The following definitions apply to the tables above.

<u>Water only water alarm</u> – When the water reached a depth of slightly more than 1.6 inches an alarm occurred. The Water Alarm threshold is programmable from around 1.7 to 10 inches.

<u>Fuel (gas or diesel) only alarm</u> – If fuel enters a dry sump the fuel sensor will alarm at around 1.3 inches

<u>Fuel alarm with water</u> – If water is present and fuel enters the sump, a fuel alarm will result when the fuel depth reaches 1.0 to 1.2 inches on top of the water. This will occur irrespective of the water depth as long as the water is below the top of the sensor. The Fuel Alarm threshold is not programmable.

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Interstitial Veeder Root Sensor for Double-walled Tanks – High Alcohol

Version number(s) 794380-345 for use with the TLS Series 350/350R/PC, EMC

Series, and Red Jacket ProMax

Monitoring System.

Vendor <u>Veeder-Root</u> (Name of Manufacturer)					
125 Powder Forest Drive, P.O. Box 2003 (Address)					
<u>Simsbury,</u> (City)	CT (State)	06070-7684 (Zip Code)	(860) 651-2700 (Phone)		

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

<u>Specificity</u> - Types of products that the sensor will respond to.

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

	Product			
Parameter	Water	Gasoline	Diesel Fuel	E85
Threshold - Lower Detection Limit (inches)	0.152	0.151	0.131	0.164
Precision - Standard Deviation (inches)	0.00708	0.00509	0.00534	0.00708
Detection Time (minute)	< 1	< 1	< 1	< 1
Fall Time (minute)	< 1	< 1	< 1	< 1

* Sensor was tested for its ability to alarm below 0.1 inches.

Specificity -This sensor will respond to any liquid after its threshold is exceeded.

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox, Ph.D., President (printed name)

H.Kendall (lleak

(signature)

February 2, 2006 (date) Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, MO 64029 (city, state, zip)

Method Name and Version: <u>Veeder Root Mag Sump Sensors</u> Date of Certification: <u>January 16, 2006</u>

Results of Evaluation of Systems Used for Testing of Sump Containment Vessels

This form describes the performance of the leak detection method described below. The evaluation was conducted by a consultant to the manufacturer according to a modification of the Water sensor test procedures described in the U.S. EPA's "Standard Test Procedure for Evaluating Leak Detection Methods: Automatic Tank Gauging Systems."

Tank owners using this leak detection system should keep this form on file to provide compliance with the federal regulations. Tank owners should check with State and local agencies to make sure this form satisfies their requirements.

Leak Detection Method Description

Name Magnetostricitive Discriminating Level Indicating Sump Sensor (Mag

Sump Sensor)

Version number(s) Sump sensor Form numbers 857080-211, 857080-221, 857080-

212 and 857080-222 for use with the TLS-350 Series, EMC Series, EMC Basic, and

Red Jacket ProMax

Vendor <u>Veeder-Root</u> (Name of Manufacturer)					
125 Powder Forest Drive, P.O. Box 2003 (Address)					
Simsbury,	СТ	06070-7684	(860) 651-2700		
(City)	(State)	(Zip Code)	(Phone)		

Evaluation Results

This Leak Detection Method minimum change in level (MLC) that can be detected by The two probes tested for this evaluation are shown in Table 1.

Table 1. Performance of Veeder Root Mag Sump Probes

	857080-211, and -221	857080-212, and -222
Parameter	(12 inch probe)	(24 inch probe)
Standard Deviation (in)	0.00130	0.00213
Minimum Level Change	0.00291	0.00475

Method Name and Version: <u>Veeder Root Mag Sump Sensors</u> Date of Certification: <u>January 16, 2006</u>

Test Conditions During Evaluation

The evaluation testing was conducted in a <u>4</u> inch diameter containment sump with a nominal cross section of <u>12.56</u> square inches and a measured level to volume ratio of <u>0.000125</u> inches per ml.

Limitations on the Results

The performance estimates above are only valid when:

- The method has not been substantially changed.
- The vendor's instructions for installing and operating the Leak Detection Method are followed.
- Other limitations specified by the vendor or determined during testing:

Procedural Information

State the procedures used to determine when the Containment Sump is stable. Level is monitored until stable readings are obtained..

State the procedures used to eliminate various types of errors.

Wind/Vibration

Shield from wind.

Water temperature versus surrounding soil and backfill temperature Not considered

Other

None specified.

Method Name and Version: <u>Veeder Root Mag Sump Sensors</u> Date of Certification: <u>January 16, 2006</u>

Other Information

Have other evaluations been conducted on this method? () Yes (X) No

If so, please summarize the results or attach a copy of the Results Forms to this document.

> Safety disclaimer: This test procedure only addresses the issue of the Leak Detection Method's ability to detect leaks. It does not test the equipment for safety hazards.

Certification of Results

I certify that the Leak Detection Method was installed and operated according to the vendor's instructions and that the results presented on this form are those obtained during the evaluation.

H. Kendall Wilcox (printed name)

H. Kendall Wleox

(signature)

Grain Valley, MO 64029 (city, state, zip)

Ken Wilcox Associates, Inc. (organization performing evaluation)

January 16, 2006 (date)

816-443-2494 (phone number)

This form documents the performance of the liquid level sensor described below. The evaluation was conducted by the equipment manufacturer or a consultant to the manufacturer according to the U.S. EPA's requirements for alternative protocols. The full evaluation report also includes a report describing the method, a description of the evaluation procedures, and a summary of the test data.

Tank owners using this system should keep this form on file to prove compliance with the federal regulations. Tank owners should check with state and local agencies to make sure this form satisfies their requirements.

Method Description

Name Single-Point Mini Hydrostatic Sensor

Version number(s) Form No. 794380-304, for use with ILS-350, TLS 300 Series, TLS-350 Series, EMC Series, EMC Basic, Red Jacket ProMax, and Red Jacket ProPlus

Vendor Veeder-Root (Name of Manufacturer)					
125 Powder Forest Drive, P.O. Box 2003 (Address)					
<u>Simsbury,</u> (City)	CT (State)	06070-7684 (Zip Code)	(860) 651-2700 (Phone)		

Evaluation Parameters

The sensors listed above were tested for their abilities to respond to liquids when the sensors are installed in underground storage tank applications. The following parameters were determined from this evaluation.

<u>Threshold (Lower Detection Limit)</u> - The smallest product thickness that the detector can reliably detect.

<u>Precision (standard deviation)</u> - Agreement between multiple measurements of the same product level.

<u>Detection Time</u> - Amount of time the detector must be exposed to product before it responds.

<u>Fall Time</u> - Amount of time before the detector stops responding after being removed from the product.

<u>Specificity</u> - Types of products that the sensor will respond to.

Liquid Level Sensor - Results Form

Evaluation Results

Note: If the test data can be presented in a more appropriate manner, the evaluator may select to present the information below in a data table, which can be attached to these forms.

Table 1. Results of the Evaluation

	Product
Parameter	Brine
Threshold - Lower Detection Limit (inches)	0.793
Precision - Standard Deviation (inches)	0.00184
Detection Time (seconds)	<15
Fall Time (seconds)	<15

Specificity -<u>This sensor will respond to any liquid after its threshold is exceeded but</u> testing was conducted only with brine

Additional Limitations or Considerations - None

> Safety Disclaimer: This test procedure only addresses the issue of the methods ability to respond to liquids. It does not test the equipment for safety hazards.

Certification of Results

I certify that the liquid level sensor was tested under conditions according to the vendor's operating instructions. I also certify that the evaluation was performed using methods described in the attached Alternative EPA Test Procedures for Liquid level sensors, and that the results presented above are those obtained during the evaluation.

H. Kendall Wilcox (printed name)

H. Kendall Where

(signature)

<u>May 18, 2004</u> (date) Liquid Level Sensor - Results Form Ken Wilcox Associates, Inc. (organization performing evaluation)

Grain Valley, MO 64029 (city, state, zip)

(816) 443-2494

Page 2 of 2

