Variable Speed Flow Controller

Installation Guide

IMPORTANT NOTICE!
The VSFC does not support DPLL sensors, and is not to be used with TLS-450 consoles.

A V-R PLLD Pressure Transducer must be installed in the STP and connected to the Variable Speed Flow Controller (VSFC) for the VSFC to control the STP.

For VSFC standalone installations (i.e., sites without a TLS-350 Console, or sites having a TLS-350 without PLLD line leak detection), a PLLD Pressure Transducer is required in the STP (V-R kit P/N 330020-45X). To install this transducer refer to relevant sections of the PLLD Site Prep guide (V-R P/N 576013-902).

For VSFC installations in sites that include a TLS-350 Console with PLLD line leak detection, a separate PLLD Pressure Transducer is not required because the VSFC unit and the PLLD system will share the same transducer.

For all VSFC installations, you must connect the PLLD Pressure Transducer’s cable to the VSFC unit following the instructions in this VSFC installation Guide.

Unit is shipped from factory preconfigured in Single-Unit mode. There is no need to change any settings except Line Pressure if unit will be installed as a single unit.
Notice

Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be photocopied, reproduced, or translated to another language without the prior written consent of Veeder-Root.

Contact TLS Systems Technical Support for additional troubleshooting information at 800-323-1799.

DAMAGE CLAIMS / LOST EQUIPMENT
Thoroughly examine all components and units as soon as they are received. If any cartons are damaged or missing, write a complete and detailed description of the damage or shortage on the face of the freight bill. The carrier’s agent must verify the inspection and sign the description. Refuse only the damaged product, not the entire shipment.

Veeder-Root must be notified of any damages and/or shortages within 30 days of receipt of the shipment, as stated in our Terms and Conditions.

VEEDER-ROOT’S PREFERRED CARRIER
1. Contact Veeder-Root Customer Service at 800-873-3313 with the specific part numbers and quantities that were missing or received damaged.
2. Fax signed Bill of Lading (BOL) to Veeder-Root Customer Service at 800-234-5350.
3. Veeder-Root will file the claim with the carrier and replace the damaged/missing product at no charge to the customer. Customer Service will work with production facility to have the replacement product shipped as soon as possible.

CUSTOMER’S PREFERRED CARRIER
1. It is the customer’s responsibility to file a claim with their carrier.
2. Customer may submit a replacement purchase order. Customer is responsible for all charges and freight associated with replacement order. Customer Service will work with production facility to have the replacement product shipped as soon as possible.
3. If “lost” equipment is delivered at a later date and is not needed, Veeder-Root will allow a Return to Stock without a restocking fee.
4. Veeder-Root will NOT be responsible for any compensation when a customer chooses their own carrier.

RETURN SHIPPING
For the parts return procedure, please follow the appropriate instructions in the “General Returned Goods Policy” pages in the “Policies and Literature” section of the Veeder-Root North American Environmental Products price list. Veeder-Root will not accept any return product without a Return Goods Authorization (RGA) number clearly printed on the outside of the package.

©Veeder-Root 2010. All rights reserved.
Table of Contents

Introduction
- Reference Manuals - As Required ... 1
- Contractor Certification Requirements .. 1
- Required Installation kits .. 1
- Safety Precautions ... 3

VSFC Description and Component Locations
- VSFC Unit Dimensions ... 6
- VSFC Unit PC Boards .. 7
- VSFC Board .. 8
 - S1 DIP SWITCH SETTINGS ... 9
 - S2 DIP SWITCH SETTINGS ... 9
 - LINE PRESSURE SETTINGS - SW1 rotary SWITCH 9
- VSFC POWER BOARD ... 10
- Mounting the VSFC Unit ... 11

VSFC Site Installation Examples
- Verify RJ Pump Type and VSFC Operation Mode ... 12
- Standalone VSFC (No TLS Console) ... 12
- VSFC with TLS Console .. 14
- Determine Site’s pump/tank configuration ... 16
 - Single Pump/Single Line/Single Tank ... 16
 - Multiple pumps/ Separate Lines / Single Tank ... 16
 - Multiple Pumps / Manifolded Line / Single Tank ... 17
 - Multiple Pumps / Manifolded Line / 2 or More Tanks 17
- Select a VSFC Site Wiring Diagram ... 18
- Wiring Notes for Example Site Wiring Diagrams ... 28
 - J1 ON VSFC MAIN BOARD (PRESSURE TRANSDUCER W/O I.S. BARRIER) ... 28
 - J2 ON VSFC MAIN BOARD .. 28
 - J5 MASTER VSFC TO J7 ON SLAVE VSFC .. 28
 - J6 MULTIPLE VSFC COMMUNICATIONS ... 28
 - J8 - 115V DISPENSER HOOK WIRING INPUTS .. 29
 - TB1 POWER INPUTS .. 31
 - PLLD CONTROLLER MODULE (TLS-350 POWER BAY) - P/N 330374-001 (120V) ... 33
 - 4 RELAY MODULE (TLS-350 POWER BAY) - P/N 329378-001 (120V) 33
 - PLLD INTERFACE MODULE (TLS-350 I.S. SAFE BAY) 33
 - INSTALLING A PRESSURE TRANSDUCER WITH I.S. BARRIER IN THE STP 33
 - INSTALLING A PRESSURE TRANSDUCER ONLY IN A STP 35
 - FLOW CALIBRATION TEST .. 36
- Selecting an Operating Mode for Multiple VSFCs .. 37
- VSFC OPERATING MODES – STANDALONE VSFCs 37
- TLS TANK-BASED LINE MANIFOLDING WITH VSFC PUMP MANIFOLDING ... 37

VSFC Troubleshooting
- Front Panel Warning/Alarm LED Messages ... 38
 - ALARM MESSAGES (RED LED) ... 38
 - WARNING MESSAGES (YELLOW LED) .. 38

Logic Board
- THIS SECTION IS ONLY FOR TECHNICIANS AND INSTALLERS! 39
 - LOGIC BOARD - DIP SWITCH S1 SETTINGS .. 40
- THIS SECTION IS ONLY FOR TECHNICIANS AND INSTALLERS! 40

Appendix A: Logic Board Dip Switch (S1) Settings .. A-1
Appendix B: VSFC Faults and Alarms

Alarms B-1
HIGH CURRENT .. B -1
OVER VOLTAGE .. B -1
LOW VOLTAGE .. B-1
OVER TEMPERATURE .. B-1
PRESSURE SENSOR FAULT ... B-1
SELF-TEST FAULT .. B-1
MOTOR DRIVE FAULT ... B-1
COMMUNICATIONS FAULT .. B-1

Warnings B-2
LOW CURRENT ... B -2
DRY RUN B-2
LONG RUN B-2
COMM WARNING ... B-2
EEPROM WARNING .. B-2
SETUP WARNING ... B-2

APPENDIX C: VSFC MOUNTING HOLE TEMPLATE

Figures

Figure 1. Verifying correct PLLD module (P/N 330885-001) ...2
Figure 2. VSFC mounting holes and unit dimensions ..6
Figure 3. VSFC Board Locations ...7
Figure 4. VSFC main board switch settings and wiring connectors8
Figure 5. VSFC Power Board Wiring Connectors ..10
Figure 6. VSFC standalone installation examples with shared conduit for pump control and pressure signals ...12
Figure 7. VSFC standalone installation examples with separate conduits for pressure and pump control signals ...13
Figure 8. VSFC/TLS-350 installation examples with shared conduit for pump control and pressure signals ...14
Figure 9. VSFC/TLS-350 installation examples with separate conduits for pressure and pump control signals ...15
Figure 10. Example Wiring Diagram 1 - Single Pump, Standalone VSFC, No I.S. Barrier ...19
Figure 11. Example Wiring Diagram 2 - Single Pump, Standalone VSFC, With I.S. Barrier ..20
Figure 12. Example Wiring Diagram 3 - Single Pump, VSFC, TLS Console, No I.S. Barrier ..21
Figure 13. Example Wiring Diagram 4 - Single Pump, Single VSFC, TLS Console, With I.S. Barrier ..22
Figure 14. Example Wiring Diagram 5 - Multiple Pumps, Master/Slave Standalone VSFCs, No I.S. Barrier ...23
Figure 15. Example Wiring Diagram 6 - Multiple Pumps, Master/Slave Standalone VSFCs, With I.S. Barrier ..24
Figure 16. Example Wiring Diagram 7 - Multiple Pumps, Master/Slave VSFCs, TLS Console, No I.S. Barrier ...25
Figure 17. Example Wiring Diagram 8 - Multiple Pumps, Master/Slave VSFCs, TLS Console With I.S. Barrier ...26
Figure 18. Example Wiring Diagram 9 - Multiple VSFC Comm Connections27
Figure 19. Sealing I.S. Barrier and Power Cable jacket ends at STP32
Figure 20. I.S. Barrier field wiring connections ..34
Figure 21. Connecting I.S. Barrier to Pressure Transducer ...34
Table of Contents

Figure 22. Epoxy sealing field wiring ... 35
Figure 23. Field wiring Pressure Transducer .. 36
Figure 24. Logic board component location ... 39

Tables

Table 1. PLLD Required Kits .. 1
Table 2. Setup Switch S1 ... 9
Table 3. Setup Switch S2 ... 9
Table 4. Rotary Switch SW1 .. 9
Table 5. Selecting VSFC Wiring Examples .. 18
Table 6. 115V Dispenser Hook Connections for Standalone VSFC Installations 29
Table 7. Three Types of 115 V Dispenser Hook Connections for
VSFC / TLS-350 Installations .. 29
Table 8. 230 V Dispenser Hook Connections for Standalone
VSFC Installations ... 30
Table 9. Two Types of 230 V Dispenser Hook Connections for
VSFC / TLS-350 Installations .. 30
Table 10. Power Inputs - TB1 ... 31
Table 11. Motor Outputs - TB2 ... 31
Table 12. Motor Wiring Resistance limits ... 32
Table 13. Logic Board - DIP Switch S1 .. 40
Introduction

This manual contains procedures for the installation or replacement of the Red Jacket Variable Speed Flow Controller (VSFC). This manual assumes all preliminary site preparation is completed, and that field wiring from the pumps to the VSFC is in place.

The VSFC does not support DPLL/D sensors/TLS-450 consoles. The VSFC is designed for use with PLLD sensors/TLS-350 consoles only!

Reference Manuals - As Required

- The Red Jacket STP Installation, Service, Parts Manual - P/N 577013-830
- Quantum 4” STP Installation, Operation, & Service Manual - P/N 042-129-1
- 4” STP and AG Pump Installation, Operation, & Service Manual - P/N 042-153-1
- PLLD (Pressurized Line Leak Detection) Site Prep and Installation Guide - P/N 576013-902
- FXV Leak Detectors Installation Instructions - P/N D042-106-1

Contractor Certification Requirements

Veeder-Root requires the following minimum training certifications for contractors who will install and setup the equipment discussed in this manual:

Installer Certification: Contractors holding valid Installer Certification are approved to perform wiring and conduit routing, equipment mounting, probe and sensor installation, tank and line preparation, and line leak detector installation.

TLS-350 Technician Certification: Contractors holding valid TLS-350 Technician Certifications are approved to perform installation checkout, startup, programming and operations training, troubleshooting and servicing for all Veeder-Root TLS-300 or TLS-350 Series Tank Monitoring Systems, including Line Leak Detection and associated accessories.

Warranty Registrations may only be submitted by selected distributors.

Required Installation kits

Table 1 illustrates the required kits and STP check valves for VSFC operation, by Red Jacket pump type.

<table>
<thead>
<tr>
<th>Pump Type</th>
<th>PLLD Kit P/N</th>
<th>Check Relief Valve</th>
<th>Single Tank w/ 2 STPs</th>
<th>2 or More Tanks w/ STP in each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Jacket</td>
<td>848480-003</td>
<td>SwiftCheck (in PLLD kit)</td>
<td>Non-vented SwiftCheck valve for slave pump. Kit P/N 330020-416 and interlock relay</td>
<td>Non-vented SwiftCheck valve for each slave pump. Kit P/N 330020-416</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Jacket</td>
<td>848480-001</td>
<td>Red Jacket Spike Check (factory installed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Red Jacket</td>
<td>848480-001</td>
<td>Factory installed check/relief valve</td>
<td>High pressure relief check valve, P/N 410153-002 and interlock relay</td>
<td>High pressure relief check valve, P/N 410153-002</td>
</tr>
</tbody>
</table>
WARNING! When installing VSFC at sites having TLS-350 Console with PLLD line leak, the Pressure Line Leak Interface Module must be V-R Form No. 847490-110.

The correct module can be verified as follows.
1. Remove the PLLD Interface Module from the TLS 350 Console.
2. Turn the PLLD Interface Module over and look for the part number on the board (see Figure 1).
3. The older module (part number 330312-001) must be replaced with the newer module (part number 330885-001).

![Figure 1. Verifying correct PLLD module (P/N 330885-001)](image)

WARNING! Only Veeder-Root Pressure Transducers, form number 848480-001, can be used with this system.
Safety Precautions

The following safety symbols are used in this manual to alert you to important safety hazards and precautions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>❗️ EXPLOSIVE</td>
<td>Fuels and their vapors are extremely explosive if ignited.</td>
</tr>
<tr>
<td>☢️ FLAMMABLE</td>
<td>Fuels and their vapors are extremely flammable.</td>
</tr>
<tr>
<td>⚡ ELECTRICITY</td>
<td>High voltage exists in, and is supplied to, the device. A potential shock hazard exists.</td>
</tr>
<tr>
<td>⚠️ TURN POWER OFF</td>
<td>Live power to a device creates a potential shock hazard. Turn Off power to the device and associated accessories when servicing the unit.</td>
</tr>
<tr>
<td>⚠️ WARNING</td>
<td>Heed the adjacent instructions to avoid equipment damage or personal injury.</td>
</tr>
<tr>
<td>🕶 WEAR EYE PROTECTION</td>
<td>Wear eye protection when working with pressurized fuel lines or epoxy sealant to avoid possible eye injury.</td>
</tr>
<tr>
<td>🧵 GLOVES</td>
<td>Wear gloves to protect hands from irritation or injury.</td>
</tr>
<tr>
<td>🌫 INJURY</td>
<td>Careless or improper handling of materials can result in bodily injury.</td>
</tr>
<tr>
<td>📚 READ ALL RELATED MANUALS</td>
<td>Knowledge of all related procedures before you begin work is important. Read and understand all manuals thoroughly. If you do not understand a procedure, ask someone who does.</td>
</tr>
</tbody>
</table>

WARNING

The VSFC unit is to be installed in systems operating near locations where highly combustible fuels or vapors may be present. Fire or explosion resulting in serious injury or death could result if the equipment is improperly installed or modified. Serious contamination of the environment may also occur.

Read and follow all instructions in this manual, including all safety warnings.

To be installed in accordance with the National Electrical Code, NFPA70, the Automotive and Marine Service Station Code, NFPA30A.

Substitution of components may impair intrinsic safety.

Do not use this component with Automatic Tank Gauges other than the TLS-350 Console. Install only as described in this manual or you will void all warranties connected with this product.
<table>
<thead>
<tr>
<th>WARNING</th>
<th>The installer must ensure that all grounds are properly connected. Failure to connect any ground wire may result in severe personal injury, death, substantial property damage or sub-par performance of the system.</th>
</tr>
</thead>
</table>

| **WARNING** | The VSFC unit contains high voltages which can be lethal. It is also connected to low power devices that must be kept intrinsically safe.
Do not connect the VSFC AC power supply wires at the breaker until all devices are installed.
Attach conduit from the power panel to the unit’s power side knockouts only.
Power and communication wiring/conduit must not enter the intrinsically-safe side of the VSFC unit.
Connecting power wires to a live circuit can cause electrical shock that may result in serious injury or death.
Routing conduit for power wires into the intrinsically-safe compartment can result in fire or explosion resulting in serious injury or death. |
|---|---|

| **WARNING** | Explosive vapors or flammable liquids could be present near locations where fuels are stored or being dispensed.
The VSFC unit is not explosion proof. Do not install this device in a volatile, combustible, or explosive atmosphere.
An explosion or fire resulting in serious injury or death, property loss and equipment damage could occur if the VSFC unit is installed in a volatile, combustible or explosive atmosphere (Class I, Division 1 or 2). |
|---|---|
The Red Jacket Variable Speed Flow Controller (VSFC) is only to be used with CPT or VSFC pumps P200U20-2, AGP200T20-2 or P200T20-2 (Standard, Quantum or RED JACKET models).

The VSFC monitors pump output line pressure to ensure a constant flow to each nozzle in the fuel line, regardless of the number of nozzles in use at any time. Depending on observed line pressure, the VSFC varies the pump’s fundamental frequency and power to increase or decrease the pump’s rotational speed and hence its output pressure.

When multiple tanks are connected to a common product line, one tank is designated the master tank and additional tanks are designated as slaves. A VSFC unit is required for each tank in a multiple tank system, but only the master tank requires a pressure transducer.

For installations that have a power conduit in the ground to the STP, and the customer does not want to bury a new wiring conduit for the VSFC-to-pressure transducer cable, a Veeder-Root Intrinsically-Safe (I.S.) barrier can be installed in the STP (NOTE: a one inch or larger conduit is required). The contractor can just pull a separate cable through the existing power conduit to the I.S. barrier in the STP (this can be done provided conduit and seal-off conductor fill requirements are met and the contractor adheres to all other aspects of the NEC or local codes).

The Red Jacket VSFC can be installed stand-alone or in conjunction with a TLS-350 console. If the TLS-350 console also performs pressurized line leak detection, the VSFC independently controls the pump to maintain desired nozzle flow rate, and operates the pump for line leak testing as directed by the console using a single Pressure Transducer.
VSFC Unit Dimensions

Figure 2 shows dimensions and mounting hole pattern of the VSFC unit. Note the clearance around the unit that is required for air circulation.

INSTALLATION TIP! Cut out mounting hole template from Appendix C. Tape template in position on wall and drill all six holes for fasteners. Remove template and screw in the bottom two fasteners, leaving about 3/8” of thread showing. Position unit so bottom mounting slots rest on the first two screws. Screw in remaining four screws and then tighten bottom two screws.
VSFC Unit PC Boards

Figure 3 shows the front door of the VSFC unit open. The VSFC board is on top, the Logic board is in the middle, and the Power board is on the bottom.

Note that the intrinsically-safe wiring compartment has the cover removed in this diagram. Only intrinsically-safe (I.S.) wiring/conduit can enter this side of the unit.

Non-I.S. wiring (VSFC power, pump power, barrier/pressure input, and com) wiring/conduit must enter the power side of the unit only.

WARNING!
Dangerous voltages present on power board while the D5 LED is lit. Wait until LED dims before reaching into unit.

Figure 3. VSFC Board Locations
VSFC Board

Figure 4 shows the position of key components on the VSFC board.

The numbers in the hex symbols, e.g., , identify important components displayed in various diagrams throughout this manual. Any text relevant to these numbered items, such as conductor type, wiring connections, or switch settings, can be identified by that item’s unique hex number identifier.

Figure 4. VSFC main board switch settings and wiring connectors
S1 DIP SWITCH SETTINGS
The S1 DIP switch settings are shown in Table 2 below.

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Position - ‘ON’ is up, ‘OFF’ is down</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>2</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>3/4</td>
<td>On/On = Single Unit (default), On/Off = alternate, Off/On = master/slave, Off/Off = Tank Based - Refer to “Selecting an Operating Mode for Multiple VSFCs” on page 37 for more information on these selections.</td>
</tr>
<tr>
<td>5</td>
<td>Off = slave, On = master (default)</td>
</tr>
<tr>
<td>6</td>
<td>On = PLLD mode enabled (default), Off = disabled (mechanical LLD)</td>
</tr>
<tr>
<td>7</td>
<td>On = Dry run retry disabled, Off = enabled (default)</td>
</tr>
<tr>
<td>8</td>
<td>Off = Long handle warning enabled (2 hours), On = disabled (default)</td>
</tr>
</tbody>
</table>

S2 DIP SWITCH SETTINGS
The S2 DIP switch settings are shown in Table 3 below.

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Position - ‘ON’ is up, ‘OFF’ is down</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>On = 19200 Uart0 Baud, Off = 9600 Uart0 Baud (default - DO NOT CHANGE)</td>
</tr>
<tr>
<td>10</td>
<td>Off = 9600 Uart1 Baud, On = 19200 Uart1 Baud (default - DO NOT CHANGE)</td>
</tr>
<tr>
<td>11</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>12</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>13</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>14</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>15</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
<tr>
<td>16</td>
<td>Off (default - DO NOT CHANGE!)</td>
</tr>
</tbody>
</table>

LINE PRESSURE SETTINGS - SW1 ROTARY SWITCH
Select a rotary switch setting for the desired line pressure from Table 4 below.

NOTE: Pressure should not be set below 22 psi on The Red Jacket pump or on other Red Jacket pumps that have the SwiftCheck or Spike Check valve installed.

<table>
<thead>
<tr>
<th>Position</th>
<th>Line Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 4.- Rotary Switch SW1

<table>
<thead>
<tr>
<th>Position</th>
<th>Line Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>30 (Default)</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>A</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
</tr>
<tr>
<td>D</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>42</td>
</tr>
<tr>
<td>F</td>
<td>44</td>
</tr>
</tbody>
</table>

VSFC POWER BOARD

Figure 5 shows the position of key components on the VSFC power board.

Figure 5. VSFC Power Board Wiring Connectors

WARNING!
Dangerous voltages present on power board while the D5 LED is lit. Wait until LED dims before reaching into unit.
Mounting the VSFC Unit

WARNING

Explosive vapors or flammable liquids could be present near locations where fuels are stored or being dispensed.
The VSFC unit is not explosion proof. Do not install this device in a volatile, combustible, or explosive atmosphere.
An explosion or fire resulting in serious injury or death, property loss and equipment damage could occur if the VSFC unit is installed in a volatile, combustible or explosive atmosphere (Class I, Division 1 or 2).

Select a mounting location on the inside of any building. The VSFC unit must be protected from severe vibration, extremes in temperature and humidity, rain, and other conditions that could harm computerized electronic equipment. The unit’s operating temperature range is 32 to 113°F (0 to 45°C), and its storage temperature range is -40 to +167°F (-40 to +75°C).

The mounting surface should be strong enough to support the unit’s weight of 9 pounds. You should also consider wall space for routing the power wiring conduits and comm wiring conduits that must be connected to the unit.
VSFC Site Installation Examples

Verify RJ Pump Type and VSFC Operation Mode

Standalone VSFC (No TLS Console)

- Figure 6 illustrates RJ pump connections for stand-alone VSFC installations with shared conduit for pressure and pump control wiring.
- Figure 7 illustrates RJ pump connections for stand-alone VSFC installations with separate conduit for pressure and pump control wirings.

NOTE: Intrinsically safe wiring (marked IS) shall be installed in accordance with Article 504-20 of the NEC, ANSI/NFPA 70.

Figure 6. VSFC standalone installation examples with shared conduit for pump control and pressure signals
Figure 7. VSFC standalone installation examples with separate conduits for pressure and pump control signals
VSFC with TLS Console

- Figure 8 illustrates RJ pump connections needed for VSFC/TLS-350 installations with shared conduit for pressure and pump control wiring.
- Figure 9 illustrates RJ pump connections needed for VSFC/TLS-350 installations with separate conduit for pressure and pump control wiring.

Figure 8. VSFC/TLS-350 installation examples with shared conduit for pump control and pressure signals
Figure 9. VSFC/TLS-350 installation examples with separate conduits for pressure and pump control signals.
Determine Site’s pump/tank configuration

Examine the examples below to determine if your site will require Slave VSFCs.

Single Pump/Single Line/Single Tank

![Single Pump/Single Line/Single Tank Diagram](vsfc1p1t.eps)

Multiple pumps/Separate Lines / Single Tank

![Multiple pumps/Separate Lines / Single Tank Diagram](vsfc2p1t.eps)
Multiple Pumps / Manifolded Line / Single Tank

![Diagram of multiple pumps manifolded line with a single tank](vsfc2mp1t.eps)

Multiple Pumps / Manifolded Line / 2 or More Tanks

![Diagram of multiple pumps manifolded line with two or more tanks](vsfcmpmt.eps)
Select a VSFC Site Wiring Diagram

Table 5.- Selecting VSFC Wiring Examples

<table>
<thead>
<tr>
<th>VSFC Configuration</th>
<th>W/O I.S. Barrier</th>
<th>W/ I.S. Barrier</th>
<th>Comm connections (between Master/Slave VSFCs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone VSFC, Single Pump</td>
<td>Figure 10</td>
<td>Figure 11</td>
<td>N/A</td>
</tr>
<tr>
<td>VSFC/TLS Console, Single Pump</td>
<td>Figure 12</td>
<td>Figure 13</td>
<td></td>
</tr>
<tr>
<td>Standalone VSFC, Multiple Pumps</td>
<td>Figure 14</td>
<td>Figure 15</td>
<td>Figure 18</td>
</tr>
<tr>
<td>VSFC/TLS Console, Multiple Pumps</td>
<td>Figure 16</td>
<td>Figure 17</td>
<td></td>
</tr>
</tbody>
</table>
Single Pump, Standalone VSFC - no TLS-350
(separate conduits for 3 phase STP power & pressure transducer wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment. Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 10. Example Wiring Diagram 1 - Single Pump, Standalone VSFC, No I.S. Barrier
Single Pump with Standalone VSFC - no TLS-350
(shared conduit for 3 phase STP power & I.S. Barrier wiring)

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 11. Example Wiring Diagram 2 - Single Pump, Standalone VSFC, With I.S. Barrier
Single Pump with TLS-350 console and PLLD
(separate conduits for 3 phase STP power & pressure transducer wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment.

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 12. Example Wiring Diagram 3 - Single Pump, VSFC, TLS Console, No I.S. Barrier
Single Pump with TLS-350 console and PLLD (shared conduit for 3 phase STP power & I.S. Barrier wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment.

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 13. Example Wiring Diagram 4 - Single Pump, Single VSFC, TLS Console, With I.S. Barrier
Multipump with stand-alone VSFCs - no TLS-350
(separate conduits for 3 phase STP power & pressure transducer wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment.
Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 14. Example Wiring Diagram 5 - Multiple Pumps, Master/Slave Standalone VSFCs, No I.S. Barrier
Multipump with stand-alone VSFCs - no TLS-350
(shared conduit for 3 phase STP power & I.S. Barrier wiring)

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 15. Example Wiring Diagram 6 - Multiple Pumps, Master/Slave Standalone VSFCs, With I.S. Barrier
Multipump with TLS-350 console and PLLD
(separate conduits for 3 phase STP power & pressure transducer wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment.

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 16. Example Wiring Diagram 7 - Multiple Pumps, Master/Slave VSFCs, TLS Console, No I.S. Barrier
Multipump with TLS-350 console and PLLD (shared conduit for 3 phase STP power & I.S. Barrier wiring)

Drain wires for all cables entering I.S. Compartment shall be connected to ground clamp in that compartment.

Drain wires for all cables entering Power Area shall be connected to ground stud in lower right corner of unit. Refer to Figure 3 for ground locations.

Figure 17. Example Wiring Diagram 8 - Multiple Pumps, Master/Slave VSFCs, TLS Console With I.S. Barrier
Comm Connections Between Multiple VSFCs

To J6 of additional slave VSFC (if necessary)

Figure 18. Example Wiring Diagram 9 - Multiple VSFC Comm Connections
Wiring Notes for Example Site Wiring Diagrams

4 J1 ON VSFC MAIN BOARD (PRESSURE TRANSDUCER W/O I.S. BARRIER)
Intrinsically safe direct input from pressure transducer: positive (+) = white wire, common (-) = black wire. Polarity required. Attach cable's drain/shield to grounding lug in I.S. compartment of VSFC unit.

NOTE: Cable for transducer signal must be shielded cable rated less than 100 picofarad per foot and be manufactured of a type designated for use in the presence of gasoline and oil, such as Carol C2534 or Belden 88760, 8760. Wire size can be #18 AWG, max. total length 1000 feet, or #22 AWG, max. total length 750 feet for each transducer.

5 J2 ON VSFC MAIN BOARD
Output to PLLD Interface module in TLS-350 console: positive (+) = white wire, common (-) = black wire. Polarity required. Attach cable's drain/shield to grounding lug in I.S. compartment of VSFC unit.

NOTE: Cable for transducer signal must be shielded cable rated less than 100 picofarad per foot and be manufactured of a type designated for use in the presence of gasoline and oil, such as Carol C2534 or Belden 88760, 8760. Wire size can be #18 AWG, max. total length 1000 feet, or #22 AWG, max. total length 750 feet for each transducer.

7 J7 ON MASTER VSFC MAIN BOARD (PRESSURE TRANSDUCER/I.S. BARRIER COMBINATION)
Input from I.S. barrier in STP. Requires 3-wire cable between VSFC and STP mounted I.S. Barrier. Connects to terminal strip J7 in the master VSFC unit. Polarity required.

NOTE: Cable for I.S. Barrier must be a 600 volt, shielded 3-conductor with drain, V-R P/N 780-916-1 (Belden 1121A). Drain connects to green grounding wire in STP's contractor box.

6 J5 MASTER VSFC TO J7 ON SLAVE VSFC
Supplies pressure signal from Master VSFC unit to slave VSFC unit. Up to three slave VSFC units can be daisy chained to the master VSFC unit (the slave connect kit, P/N 330020-494, is required for each slave unit). Connect terminal strip J5 on the master VSFC unit to terminal strip J7 on the first slave unit, connect J5 on the first slave unit to J7 on the second slave unit, and connect J5 on the second slave unit to J7 on the third slave unit.

NOTE: Cable for transducer signal must be a shielded cable. Cable for transducer signal from Master to Slave unit can be the same cable used for transducer wiring.

18 J6 MULTIPLE VSFC COMM CONNECTIONS
When multiple VSFC units are installed, connect wiring between the J6 terminal strips of the master unit and the J6 terminal strip of each slave unit as shown in Figure 18. Slave Comm pinouts are; 1 = Plus, 2 = minus, and if shielded cable is used, attach shield of Slave Comm cable to J4 position 3 - shares position 3 with Diag Comm cable shield.

NOTE: Cable for Slave Comm wiring can be #20 AWG or #22 AWG. Conduit not necessary for interdrive coms. For installations requiring slave VSFC units, please use kit P/N 330020-494.
J8 - 115V DISPENSER HOOK WIRING INPUTS

Standalone VSFC or VSFC/TLS-350 connections to 115 Vac dispenser hook signal inputs (#12 AWG max. wire) are shown in Table 6 and Table 7 below. These wiring connections apply for the following VSFC kit part numbers: 330020-450 (VSFC with VR transducer), 330020-451 (VSFC with VR transducer and I.S. barrier), and for a VSFC controller only part number: 856194-001.

Table 6.- 115V Dispenser Hook Connections for Standalone VSFC Installations

<table>
<thead>
<tr>
<th>VSFC J8 (P/N 856194-001) Terminal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115 Vac hook signal from dispenser</td>
</tr>
<tr>
<td>2</td>
<td>Neutral from power panel</td>
</tr>
</tbody>
</table>

Table 7.- Three Types of 115 V Dispenser Hook Connections for VSFC / TLS-350 Installations

<table>
<thead>
<tr>
<th>TLS-350 Wiring Connections - Select One Type</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSFC (P/N 856194-001) J8 Terminal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO (to J8, Ter. 1 in VSFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (L1 from Power Panel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120V Pump Sense Module (P/N 329999-001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI (Dispenser hook signal - 115 V)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR (Neutral from power panel)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Requires a customer supplied relay to convert 115 V hook signal to +/- contact closure for I/O Module inputs.
J8 - 230V DISPENSER HOOK WIRING INPUTS

Standalone VSFC or VSFC/TLS-350 connections to 230 Vac dispenser hook signal inputs (#12 AWG max. wire) are shown in Table 9 and Table 9 below. These wiring connections apply for the following VSFC kit part numbers: 330020-540 (VSFC with VR transducer), 330020-541 (VSFC with VR transducer and I.S. barrier), and for a VSFC controller only part number: 856164-101.

Table 8.- 230 V Dispenser Hook Connections for Standalone VSFC Installations

<table>
<thead>
<tr>
<th>J8 Terminal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230 Vac hook signal from dispenser</td>
</tr>
<tr>
<td>2</td>
<td>Neutral from power panel</td>
</tr>
</tbody>
</table>

Table 9.- Two Types of 230 V Dispenser Hook Connections for VSFC / TLS-350 Installations

<table>
<thead>
<tr>
<th>VSFC (P/N 856164-101) J8 Terminal</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240V I/O Module (P/N 329379-002) Relay Side</td>
<td>240V PLLD Controller Module (P/N 330374-002) (PLLD Leak Detection)</td>
</tr>
<tr>
<td>1 (from a type at right)</td>
<td>NO (to J8, Ter. 1 in VSFC)</td>
<td>PO (to J8, Ter. 1 in VSFC)</td>
</tr>
<tr>
<td>2 (connects to Neutral from the power panel)</td>
<td>C (L1 from Power Panel)</td>
<td>L1 (L1 from Power Panel)</td>
</tr>
<tr>
<td>I/O Module - Input Side</td>
<td>PI (Dispenser hook signal - 230 V)</td>
<td>PR (Neutral from power panel)</td>
</tr>
<tr>
<td>+ (external relay - Normally Open)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- (external relay - Common)*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Requires a customer supplied relay to convert 230 V hook signal to +/- contact closure for I/O Module Inputs.
TB1 POWER INPUTS

Drive voltage should not exceed 230 Vac, ±15%.

Table 10.- Power Inputs - TB1

<table>
<thead>
<tr>
<th>TB1 Terminal</th>
<th>Input</th>
<th>Circuit Breaker</th>
<th>Wire Sizes/Length Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Phase 208, 220, 230, 240 Vac Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Hot (L1)</td>
<td>20 Amp</td>
<td>#10 AWG 370 feet</td>
</tr>
<tr>
<td>L2</td>
<td>Not Used</td>
<td></td>
<td>#12 AWG 236 feet</td>
</tr>
<tr>
<td>L3</td>
<td>Hot (L2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground stud</td>
<td>Ground from power panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-Phase 208, 220, 230, 240 Vac Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Phase 1</td>
<td>15 Amp</td>
<td>#10 AWG 683 feet</td>
</tr>
<tr>
<td>L2</td>
<td>Phase 2</td>
<td></td>
<td>#12 AWG 437 feet</td>
</tr>
<tr>
<td>L3</td>
<td>Phase 3</td>
<td></td>
<td>#14 AWG 275 feet</td>
</tr>
<tr>
<td>Ground stud</td>
<td>Ground from power panel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turn off, lock out, and tag power at the panel before making these connections.

NOTE: VSFC Power Wire must be appropriate gauge shielded 4-conductor Anixter wire 14 AWG (2A-1404S or W2A-1404S), 12 AWG (2A - 1204S or W2A-1204S), 10 AWG (2A - 1004S or W2A-1004S), or CSA equivalent.

Power input cable and power output cable cannot be installed in the same conduit.

TB2 POWER OUTPUTS

Table 11.- Motor Outputs - TB2

<table>
<thead>
<tr>
<th>TB2 Terminal</th>
<th>Motor Wire Color</th>
<th>Acceptable Wire Sizes/Length Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Red wire</td>
<td>#10 AWG 785 feet</td>
</tr>
<tr>
<td>T2</td>
<td>Orange wire</td>
<td>#12 AWG 502 feet</td>
</tr>
<tr>
<td>T3</td>
<td>Black wire</td>
<td>#14 AWG 316 feet</td>
</tr>
<tr>
<td>Ground stud</td>
<td>Blue wire</td>
<td></td>
</tr>
</tbody>
</table>

Turn off, lock out, and tag power at the panel before making these connections.

NOTE: VSFC Pump Wire must be appropriate gauge shielded 4-conductor Anixter wire 14 AWG (2A-1404S or W2A-1404S), 12 AWG (2A - 1204S or W2A-1204S), 10 AWG (2A - 1004S or W2A-1004S), or CSA equivalent.

NOTE: Both I.S. Barrier and STP power shielded cables must be sealed in accordance with NEC Article 501-5(d) which states that the outer jacket of multi-conductor cable must be removed within the seal off of the Division 1 location, (submersible sump) so the sealing compound will surround each individual conductor. Do not break the drain wire or remove any more of the jacket than is required (see Figure 19).
Before applying power to the VSFC unit, you must check the resistance between the terminals on TB2. Resistances between terminals must be within the ranges shown in Table 12.

Table 12.- Motor Wiring Resistance limits

<table>
<thead>
<tr>
<th>TB2 Terminals</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 - T2</td>
<td>2 - 5 ohms</td>
</tr>
<tr>
<td>T2 - T3</td>
<td>2 - 5 ohms</td>
</tr>
<tr>
<td>T1 - T3</td>
<td>2 - 5 ohms</td>
</tr>
<tr>
<td>T1, T2, T3 to ground</td>
<td>Infinite (at least 1 Megohm)</td>
</tr>
</tbody>
</table>

NOTE: It is possible to wire the pump so that it runs in reverse. To verify correct rotation:

1. Install a pressure gauge in the STP’s line test port.
2. Ensure that the pump inlet is submerged in product.
3. Close the ball valve to the product line.
4. Disconnect the transducer input from the VSFC.
5. Turn on the pump. With the pump running at shutoff (no flow), the pressure should be 28 to 32 psi.
6. If pressure is much lower, reverse any two of the motor wires at the TB2 terminal and retest the pressure.
7. If reversing the two motor wires doesn’t work, check for blockage at the pump inlet.
PLLD CONTROLLER MODULE (TLS-350 POWER BAY) - P/N 330374-001 (120V)

LI = Line In, PI = Pump In (hook signal), PR = Pump Return, PO = Pump Output

The wire for these connections should be #14 AWG copper wire.

4 RELAY MODULE (TLS-350 POWER BAY) - P/N 329378-001 (120V)

NO = Normally Open, C = Common

The wire for these connections should be #14 AWG copper wire.

PLLD INTERFACE MODULE (TLS-350 I.S. SAFE BAY)

Input from J2 on VSFC main board: + = positive, - = negative. Polarity required.

NOTE: Cable for transducer signal must be shielded cable rated less than 100 picofarad per foot and be manufactured of a type designated for use in the presence of gasoline and oil, such as Carol C2534 or Belden 88760, 8760. Wire size can be #18 AWG, max. total length 1000 feet, or #22 AWG, max. total length 750 feet for each transducer.

INSTALLING A PRESSURE TRANSDUCER WITH I.S. BARRIER IN THE STP

For installations in which the Pressure Transducer and pump control wiring share the same conduit to the VSFC unit, a Veeder-Root Intrinsically Safe Barrier must be installed in the STP and be connected to the Pressure Transducer. These connections are discussed in the procedure below:

1. Reference Figure 6 and Figure 8 for installation examples.
2. Install Pressure Transducer (P/N 848480-001) as instructed in PLLD Transducer Installation Manual (P/N 576013-902) for the appropriate STP.
3. Remove the two contractor box covers (see Figure 6 or Figure 8) for cover locations on each style pump).
4. Inspect port’s threads and hand clean with a wire brush if necessary.
5. Lubricate the o-ring of the I.S. barrier with petroleum jelly.

WARNING

DO NOT APPLY ANY THREAD SEALANT OR PIPE DOPE TO THE THREADS OF THE I.S. BARRIER OR TO THE THREADS OF THE STP’S CONTRACTOR BOX INTO WHICH IT IS INSTALLED.

The metal-to-metal joint created by threads of the I.S. Barrier in the STP’s contractor’s box ensures a restricted flame path to prevent propagation of a spark or flame to a hazardous area. If any thread sealant or pipe dope is applied to the threads of the I.S. Barrier or to the threads of the contractor’s box, the flame path may not be restricted, potentially resulting in serious injury or death from explosion.

6. Install the I.S. Barrier (P/N 332101-001). Do not use thread sealant. Torque the I.S. Barrier to 35 ft-lbs (50 N·m).
7. Pull the three wire cable (P/N 780-916-1) from the VSFC Master Unit into the STP’s contractor box. In The Red Jacket VSFC pumps, the compression bushing (P/N 410301-001) and tubing kit (P/N 410370-001) is required with this cable.
8. Connect the black, white, and green wires in the bottom of the I.S. Barrier to the black (−) red (+), and blue (ground) wires in the VSFC cable using wire nuts as shown in Figure 20. Use a wire nut to connect the cable’s drain wire to the grounding wire attached to contractor’s box.

![Figure 20. I.S. Barrier field wiring connections](redjacket/vsfc19.eps)

9. Install and torque the contractor’s box cover to 35 ft-lbs (50 N·m).

10. In the weatherproof junction box, connect the Pressure Transducer cable to the cable out of the top of the I.S. Barrier with wire nuts as shown in Figure 21.

![Figure 21. Connecting I.S. Barrier to Pressure Transducer](redjacket/vsfc15.eps)

11. Seal I.S. Barrier to Pressure Transducer wire nuts with epoxy sealant following the instructions in Figure 22.
12. Place the epoxy pack with the encapsulated wiring connections in the sump's weatherproof junction box. Replace and tighten the junction box cover.

13. Connect the 3 wires from the I.S. Barrier to J7 in the VSFC Master Unit.

14. Return to the PLLD Site Prep and Installation manual (P/N 576013-902) and complete the PLLD System Checkout procedure (PLLD System Checkout section). After completing the PLLD System Checkout procedure run the “FLOW CALIBRATION TEST” on page 36.

INSTALLING A PRESSURE TRANSDUCER ONLY IN A STP

For installations in which the Pressure Transducer and pump control wiring have separate conduits to the VSFC unit, follow the procedure below to install the Pressure Transducer in the STP:

1. Reference Figure 7 and Figure 9 for installation examples.

2. Install Pressure Transducer (P/N 848480-001) as instructed in PLLD Transducer Installation Manual (P/N 576013-902) for the appropriate STP.

3. In the weatherproof junction box, connect the Pressure Transducer cable to the cable from the VSFC Master Unit using wire nuts as shown in Figure 23 and epoxy seal connections as shown in Figure 22.
4. Place the epoxy pack with the encapsulated wiring connections in the sump’s weatherproof junction box. Replace and tighten the junction box cover.

5. Connect the two wires from the Pressure Transducer to the VSFC Master Unit as shown in Figure 10 or Figure 12 as applicable.

6. Return to the PLLD Site Prep and Installation manual (P/N 576013-902) and complete the PLLD System Checkout procedure (PLLD System Checkout section). After completing the PLLD System Checkout procedure run the “FLOW CALIBRATION TEST” below.

FLOW CALIBRATION TEST

After performing the PLLD System Checkout procedure, calibrate the VSFC flow rate as follows:

1. With the nozzle closest to the pump fully open and dispensing into an approved 5 gallon container or gas tank of a vehicle, record the gallons pumped for a timed interval of 15 seconds. For best accuracy, wait 15 seconds after lifting the dispenser handle before beginning the timed interval.

2. Calculate the flow rate (gpm) by multiplying the gallons pumped in 15 seconds by 4. The result is in gallons per minute.

3. Increase or decrease the pressure if necessary to change flow as needed. This is accomplished with rotary switch SW1 (ref. Table 4 on page 9).

4. Repeat the Flow Calibration Test after every adjustment of pressure and until flow rate does not exceed 10 gpm.
Selecting an Operating Mode for Multiple VSFCs

Operating Modes selections are made with DIP switches 3 and 4 of SW1 (ref. Item 1 in Figure 4 on page 8) as shown below:

<table>
<thead>
<tr>
<th>SW1 DIP Switches</th>
<th>Position - ‘ON’ is up, ‘OFF’ is down</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>On/On = Single Unit (default), On/Off = Alternate, Off/On = Master/Slave, Off/Off = Tank Based</td>
</tr>
</tbody>
</table>

VSFC OPERATING MODES – STANDALONE VSFCs

<table>
<thead>
<tr>
<th>Desired Operation</th>
<th>VSFC Mode Settings</th>
<th>Help?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master VSFC alternates pumps and determines when help is needed.</td>
<td>Alternate</td>
<td>Yes</td>
</tr>
<tr>
<td>Master VSFC controls which pump turns on and determines when help is needed.</td>
<td>Master/Slave</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TLS TANK-BASED LINE MANIFOLDING WITH VSFC PUMP MANIFOLDING

<table>
<thead>
<tr>
<th>Desired Operation</th>
<th>TLS* Mode Setting</th>
<th>VSFC Mode Settings</th>
<th>Help?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS maintains similar tank volumes by turning on the pump in the tank with the highest volume.</td>
<td>Alternate</td>
<td>Tank Based</td>
<td>No</td>
<td>VSFC follows TLS hook signals</td>
</tr>
<tr>
<td>TLS pumps from one tank until minimum level reached and then switches to the other tank.</td>
<td>Sequential</td>
<td>Tank Based</td>
<td>No</td>
<td>VSFC follows TLS hook signals</td>
</tr>
<tr>
<td>TLS turns on all pumps</td>
<td>All pumps</td>
<td>Tank Based</td>
<td>Not applicable</td>
<td>All pumps are on. VSFC maintains flow rate.</td>
</tr>
<tr>
<td>Pumps alternate pumping. Help available when needed. Wear on pumps is spread out equally.</td>
<td>All pumps</td>
<td>Alternate</td>
<td>Yes</td>
<td>VSFC controls which pump turns on. VSFC alternates pumps and determines when help is needed.</td>
</tr>
<tr>
<td>Master pump always runs, slave pump runs when help is needed.</td>
<td>All pumps</td>
<td>Master/Slave</td>
<td>Yes</td>
<td>VSFC controls which pump turns on and determines when help is needed.</td>
</tr>
</tbody>
</table>

*With or without PLLD.
Front Panel Warning/Alarm LED Messages

The Warning and Alarm LEDs on the front of the VSFC unit will blink when a fault is detected. The time between blinks in an alarm or warning message is 0.5 second. If there is more than one warnings/alarm message, each message is separated by a 2 second space. A single message or a multiple message sequence will continue to repeat until the fault(s) is corrected and the Reset button on the front of the unit is pressed. The messages are:

ALARM MESSAGES (RED LED)

1 blink = High current
2 blinks = Over voltage
3 blinks = Low voltage
4 blinks = Over temperature
5 blinks = Pressure sensor fault
6 blinks = Self-test fault
7 blinks = Motor drive fault
8 blinks = Communication fault

WARNING MESSAGES (YELLOW LED)

1 blink = Low current
2 blinks = Dry run
3 blinks = Long run
4 blinks = Communications warning
5 blinks = EEPROM warning
6 blinks = Setup warning
The Logic board is installed between the top VSFC controller board and the lower Power board. Figure 24 shows switches and LEDs on the Logic board with the front door of the VSFC open.

Figure 24. Logic board component location
Logic Board

THIS SECTION IS ONLY FOR TECHNICIANS AND INSTALLERS!

LOGIC BOARD - DIP SWITCH S1 SETTINGS

Table 13.- Logic Board - DIP Switch S1

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
<th>Switch 1,2 positions: Off, Off = 1 (default), On, Off = 2, Off, On = 3, On, On = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serial address A0</td>
<td>NOTE: For single unit operation, settings must be OFF, OFF. Also, for multiple pumps, master must be highest address. See Appendix A. (CHANGE ONLY WHEN INSTALLING MULTIPLE VSFCs ON A SINGLE LINE)</td>
</tr>
<tr>
<td>2</td>
<td>Serial address A1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Serial baud rate: Off = 9600, On = 19200 (default) (DO NOT CHANGE!)</td>
<td></td>
</tr>
<tr>
<td>4, 5, 6</td>
<td>Reserved (DO NOT CHANGE!)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D3, D4 LEDs: Off = normal (default) (DO NOT CHANGE!), On = disabled</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Serial time-out: Off = enabled (default) (DO NOT CHANGE!), On = disabled</td>
<td></td>
</tr>
</tbody>
</table>

Fault Reset Switch (S2)
Pressing the Fault Reset switch will reset the Logic board only.

Jog Test Switch (S3)
Pressing the Jog Test switch will test power to the pump only.

Power LED (D1)
The green Power LED is on while power is applied to the unit.

Run LED (D3)
When the red Run LED is flashing slowly the motor has stopped. When the LED is flashing fast the motor is running.

Fault LED (D4)
The number of red Fault LED flashes indicate what type of problem has occurred on the Logic board. This LED is to assist technicians in Logic board diagnostics.
Appendix A: Logic Board Dip Switch (S1) Settings

Note: refer to Figure 24 on page 39 and Table 13 on page 40.

4 UNIT SETUP

<table>
<thead>
<tr>
<th>VSFC MASTER</th>
<th>SLAVE 1</th>
<th>SLAVE 2</th>
<th>SLAVE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1:1 = On</td>
<td>S1:1 = Off</td>
<td>S1:1 = Off</td>
<td>S1:1 = Off</td>
</tr>
<tr>
<td>S1:2 = On</td>
<td>S1:2 = On</td>
<td>S1:2 = Off</td>
<td>S1:2 = Off</td>
</tr>
<tr>
<td>Com Bus Address 4</td>
<td>Com Bus Address 3</td>
<td>Com Bus Address 2</td>
<td>Com Bus Address 1</td>
</tr>
</tbody>
</table>

3 UNIT SETUP

<table>
<thead>
<tr>
<th>VSFC MASTER</th>
<th>SLAVE 1</th>
<th>SLAVE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1:1 = Off</td>
<td>S1:1 = On</td>
<td>S1:1 = Off</td>
</tr>
<tr>
<td>S1:2 = On</td>
<td>S1:2 = Off</td>
<td>S1:2 = Off</td>
</tr>
<tr>
<td>Com Bus Address 3</td>
<td>Com Bus Address 2</td>
<td>Com Bus Address 1</td>
</tr>
</tbody>
</table>

2 UNIT SETUP IN THE SAME TANK

<table>
<thead>
<tr>
<th>VSFC MASTER</th>
<th>SLAVE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1:1 = On</td>
<td>S1:1 = Off</td>
</tr>
<tr>
<td>S1:2 = Off</td>
<td>S1:2 = Off</td>
</tr>
<tr>
<td>Com Bus Address 2</td>
<td>Com Bus Address 1</td>
</tr>
</tbody>
</table>
Appendix B: VSFC Faults and Alarms

Alarms

HIGH CURRENT
High current has been detected. The motor rotor could be locked. One or more of the phases going to the motor could be open. Check the motor by checking the resistance between the terminals (see Table 12 on page 32). Check all the wiring going to the motor for opens and shorts.

OVER VOLTAGE
High input voltage has been detected. Check the input voltage to make sure that it is within specifications (see Table 10 on page 31).

LOW VOLTAGE
Low input voltage has been detected. Check the input voltage to make sure that it is within specifications (see Table 10 on page 31).

OVER TEMPERATURE
High internal drive temperature has been detected. Check to make sure that the drive has the proper clearance on all sides and that nothing is obstruction the airflow. Check to make sure that the fan is running.

PRESSURE SENSOR FAULT
Pressure transducer has faulted. Check to make sure that the pressure transducer is connected. Check the wiring to the transducer.

SELF-TEST FAULT
Software has detected errors in the drive. Turn off power, check all setup switches and wiring then apply power to the drive.

MOTOR DRIVE FAULT
Drive has detected a problem running the motor. Check all drive wiring (see Table 10 on page 31, Table 11 on page 31, and Table 12 on page 32).

COMMUNICATIONS FAULT
Drive has detected communication errors. In standalone configuration check cable connected to J9 (see Figure 4 on page 8). In multi-unit configuration, check the Slave COM connections and wiring (Figure 18 on page 27) in each drive.
Warnings

LOW CURRENT
The current going to the motor has been less than 1 amp for more than 5 seconds. Check the entire system for proper operation and wiring.

DRY RUN
The drive has detected a dry run. Please check product level in the tank. If fuel levels are sufficient check the wiring going to the motor (see Table 11 on page 31).

LONG RUN
The drive has detected a handle request continuously for more than 2 hours without product being dispensed. Check the wiring and operation of the handle signal from the dispensers. If it is a true dispense of that duration and flow requirement, disable the Long Handle Warning (see Table 2 on page 9).

COMM WARNING
The master VSFC unit has lost communications with another VSFC unit. Check all the communication wires (see Figure 18 on page 27) and power to all drives and then reset the master drive (see Table 11 on page 31).

EEPROM WARNING
The VSFC drive had a problem reading from the EEPROM. Reset the master VSFC drive. If the warning persists than the drive has a problem with the EEPROM. The drive will still operate in this state; it will not be able to save any warning or alarm histories.

SETUP WARNING
The VSFC drive detected a setup problem. Turn off power, check all setup switches and wiring then re-power the drive.
APPENDIX C: VSFC MOUNTING HOLE TEMPLATE

VSFC Unit Mounting Hole Template

redjacket\vsfc\apdxa.eps

<< cut along dotted line >>
For technical support, sales or other assistance, please visit: www.veeder.com