# **TLS-50**

Site Prep Manual



Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be photocopied, reproduced, or translated to another language without the prior written consent of Veeder-Root.

#### DAMAGE CLAIMS / LOST EQUIPMENT

Thoroughly examine all components and units as soon as they are received. If any cartons are damaged or missing, write a complete and detailed description of the damage or shortage on the face of the freight bill. The carrier's agent must verify the inspection and sign the description. Refuse only the damaged product, not the entire shipment.

#### **VEEDER-ROOT'S PREFERRED CARRIER**

- 1. Contact VR Customer Service at 800-873-3313 with the specific part numbers and quantities that were missing or received damaged.
- 2. Fax signed Bill of Lading (BOL) to VR Customer Service at 800-234-5350.
- 3. VR will file the claim with the carrier and replace the damaged/missing product at no charge to the customer. Customer Service will work with production facility to have the replacement product shipped as soon as possible.

#### **CUSTOMER'S PREFERRED CARRIER**

- 1. It is the customer's responsibility to file a claim with their carrier.
- 2. Customer may submit a replacement purchase order. Customer is responsible for all charges and freight associated with replacement order. Customer Service will work with production facility to have the replacement product shipped as soon as possible.
- 3. If "lost" equipment is delivered at a later date and is not needed, VR will allow a Return to Stock without a restocking fee.
- 4. VR will NOT be responsible for any compensation when a customer chooses their own carrier.

#### **RETURN SHIPPING**

For the parts return procedure, please follow the appropriate instructions in the "General Returned Goods Policy" and "Parts Return" pages in the "Policies and Literature" section of the Veeder-Root North American Environmental Products price list.

©Veeder-Root 2006. All rights reserved.

### Introduction

| Related Manuals | 2 |
|-----------------|---|
| Safety Symbols  | 2 |

# **Site Considerations**

| Control Drawing                                            | 3 |
|------------------------------------------------------------|---|
| National Electrical Code Compliance                        | 4 |
| Probe-to-Console Wiring                                    | 4 |
| Shielded Cable or Veeder-Root Direct Burial Cable Required | 4 |
| Wire Length                                                | 4 |
| Splices                                                    | 4 |
| Wire Gauges - Color coded                                  | 4 |
| Power Wiring                                               | 4 |
| Probe Junction Boxes                                       | 4 |
| Probe Wiring Safety Issues                                 | 5 |
| Selecting a Console Location                               | 5 |

# **Console Installation**

| Mounting the Console | 7 |
|----------------------|---|
| Wiring the Console   | ) |

### **Probe Installation**

| Probe Manhole Installation                                         | 10 |
|--------------------------------------------------------------------|----|
| Determining Mag Probe Length for Installation in a Dedicated Riser | 10 |
| Probe Installation                                                 | 10 |
| Special Instructions for UST's with Metal Riser Caps               | 12 |
| Installing Field Wiring from Probes to TLS-50 Console              | 13 |
| Buried Rigid Conduit                                               | 13 |
| Sealing Field Connections                                          | 14 |
| Direct Burial Cable - Probe to Console Field Wiring                | 15 |
| Direct Burial Cable Field Wiring                                   | 15 |
| Connecting Probes to the Console                                   | 16 |
| Precautions To Follow When Connecting Probes to TLS-50 Console     | 16 |
| Input/Output Wiring Positions and Labeling                         | 16 |
| Wiring Assignments                                                 | 16 |
| Grounding Probe Shields and Drain Wires                            | 17 |
| Connecting Probes to the Console - Observe Polarity                | 17 |
| System Setup Security                                              | 18 |
| Overfill Alarm Relay                                               | 18 |

### **Applying Power to System**

| Cold Boot - Initial Power Up (Consoles w/Display)   | 20 |
|-----------------------------------------------------|----|
| Cold Boot - Initial Power Up (Consoles w/o Display) | 20 |
| Cold Boot - RAM Clear                               | 20 |
| Consoles with Display                               | 20 |
| Consoles Without Display                            | 20 |
| Warm Boot                                           | 21 |
| Consoles with Display                               | 21 |
| Consoles without Display                            | 21 |
|                                                     |    |

# **RS-232** Communications

| RS-232 Peripheral Equipment Requirements       | 22 |
|------------------------------------------------|----|
| RS-232 Connections                             | 22 |
| To a Device Less Than 50 Feet from the Console | 22 |
| To a Device More Than 50 Feet from the Console | 22 |
| Surge Protection for Communication Devices     | 23 |
| System Serial Security                         | 24 |
| RS-232 Serial Communication Setup              | 24 |
| DB-9 Connector Pin-Outs                        | 25 |

### **RS-232 Commands**

| Function Code: 001 |  |
|--------------------|--|
| Function Code: 003 |  |
| Function Code: 201 |  |
| Function Code: 205 |  |
| Function Code: 504 |  |
| Function Code: 50C |  |
| Function Code: 50D |  |
| Function Code: 50E |  |
| Function Code: 517 |  |
| Function Code: 601 |  |
| Function Code: 604 |  |
| Function Code: 605 |  |
| Function Code: 606 |  |
| Function Code: 607 |  |
| Function Code: 608 |  |
| Function Code: 609 |  |
| Function Code: 60A |  |
| Function Code: 621 |  |
| Function Code: 624 |  |
| Function Code: 628 |  |
| Function Code: 638 |  |
| Function Code: 881 |  |
| Function Code: 882 |  |
| Function Code: 883 |  |
| Function Code: 884 |  |
| Function Code: 902 |  |
| Function Code: A01 |  |
| Function Code: A02 |  |
| Function Code: A10 |  |
| Function Code: A11 |  |
| Function Code: A12 |  |

# Troubleshooting

| Dual-Function Front Panel Keys (consoles w/Keypads Only) | 58 |
|----------------------------------------------------------|----|
| Probe Troubleshooting                                    | 58 |
| consoles w/o Display                                     | 58 |
| Consoles w/Display                                       | 58 |
| Probe Diagnostic Report                                  | 61 |
| Replacing the CPU Board                                  | 61 |
| PROM Chip Replacement (Software Upgrade)                 | 63 |
| Replacing the Power Supply Board                         | 66 |
|                                                          |    |

# **Console Specifications**

| Physical Specifications                         | 67 |
|-------------------------------------------------|----|
| Environmental Specifications                    | 67 |
| Electrical Specifications                       | 67 |
| Signal Input Specifications                     | 67 |
| Signal Output Specifications                    | 67 |
| Front Panel User Interface (Consoles w/Display) | 67 |
| Probe Circuit Codes                             | 68 |
|                                                 |    |

# Appendix A: TLS-50 and TLS-50C Safety Instructions ...... A-1

# Figures

| Figure 1.  | Locating the console form number                              | 1  |
|------------|---------------------------------------------------------------|----|
| Figure 2.  | Control Drawing - Example TLS-50 System Site Layout           | 3  |
| Figure 3.  | Recommended Mounting of Console                               | 7  |
| Figure 4.  | Console Dimensions and Designated Conduit Knockouts           | 8  |
| Figure 5.  | Wiring AC Power to the Console                                | 9  |
| Figure 6.  | Determining the Minimum Mag Probe Length                      | 10 |
| Figure 7.  | TLS-50 Probe Installation Example - Underground Storage Tank  | 11 |
| Figure 8.  | TLS-50 Probe Installation Example - Above ground Storage Tank | 11 |
| Figure 9.  | Installing the Riser Adapter                                  | 12 |
| Figure 10. | Example Probe Wiring Run in Buried Rigid Conduit              | 13 |
| Figure 11. | Probe Field Wiring Connection                                 | 14 |
| Figure 12. | Epoxy Sealing Connections                                     | 14 |
| Figure 13. | Example Probe Wiring Run via Direct Burial Cable              | 15 |
| Figure 14. | Probe Installation Directory                                  | 17 |
| Figure 15. | Connecting Probe Wiring to Console                            | 17 |
| Figure 16. | DIP switch 4 in closed position to enable menu lockout        | 18 |
| Figure 17. | Connecting I/O Devices to Console                             | 19 |
| Figure 18. | Console Connected to a Remote Device via Short-Haul Modem     | 23 |
| Figure 19. | Console Dip Switch Settings                                   | 24 |
| Figure 20. | DB9, RS-232 Pin-Outs                                          | 25 |
| Figure 21. | Dual-Function Keys                                            | 58 |
| Figure 22. | Diagnostic Menu - Overview                                    | 59 |
| Figure 23. | Diagnostic Menu - Explanation                                 | 60 |
| Figure 24. | CPU Board Voltage Test Points (Keypad/Display version shown)  | 62 |
| Figure 25. | Removing PROM Chip                                            | 64 |
| Figure 26. | Replacing PROM Chip (Keypad/Display version shown)            | 65 |

# Introduction

This manual describes the site preparation and console installation procedures for all TLS-50 Monitoring Systems. Except where noted, the procedures described herein apply to all consoles. TLS-50 is used throughout Table 1 lists the various TLS-50 consoles and options by form number. Figure 1 shows where on the top of the console you can find the information about your console's form number.

| Console Form No. | Console Type                                                    |  |
|------------------|-----------------------------------------------------------------|--|
| 8469X0-060       | S-50 w/keypad and display, up to 6 probes                       |  |
| 8469X0-160       | _S-50 w/keypad and display, w/relay, up to 6 probes             |  |
| 8469X0-260       | TLS-50 w/keypad and display, w/com and relay, up to 6 probes    |  |
| 8469X0-230       | 8469X0-230 TLS-50C w/o keypad or display, w/com, up to 3 probes |  |
| 8469X0-460       | TLS-50 w/o keypad or display, w/com and relay, up to 6 probes   |  |

| Table 1 TLS- | -50 Consoles | and Features |
|--------------|--------------|--------------|
|--------------|--------------|--------------|





This manual assumes that you installing the monitoring system in a new site (before pavement is put down and with no wiring runs in place). Some of the topics covered in this manual are listed below.

- Laying out the site
- · Mounting the console and connecting power wiring
- Assembling and installing probes
- Installing wiring conduit between the console and probes
- Field wiring probes
- Connecting probes to the console
- RS-232 serial communication connection requirements and available serial commands (consoles with com option)
- Troubleshooting information

• TLS-50 system specifications

After the console is wired to its power source and probes, you should program the console following the setup instructions contained in the TLS-50 Setup & Operation Manual.

# **Related Manuals**

| 577013-609 | TLS-50 Setup & Operation Manual         |
|------------|-----------------------------------------|
| 576013-635 | RS-232 Serial Interface Manual          |
| 576013-859 | Direct Burial Cable Installation Manual |
| 577013-744 | Mag Plus Probe Assembly Guide           |

### **Safety Symbols**

The following safety symbols are used in this manual to alert you to important safety hazards and precautions.

| F   | <b>EXPLOSIVE</b><br>Fuels and their vapors are extremely<br>explosive if ignited.                                                         | FLAMMABLE<br>Fuels and their vapors are extremely<br>flammable.                                                                                                                                                                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (F) | <b>ELECTRICITY</b><br>High voltage exists in, and is supplied<br>to, the device. A potential shock haz-<br>ard exists.                    | <b>TURN POWER OFF</b><br>Live power to a device creates a<br>potential shock hazard. Turn Off<br>power to the device and associated<br>accessories when servicing the unit.                                                    |
|     | <b>INJURY</b><br>Careless or improper handling of<br>materials can result in bodily injury.                                               | GLOVES<br>Wear gloves to protect hands from<br>irritation or injury.                                                                                                                                                           |
|     | WEAR EYE PROTECTION<br>Fuel spray from residual pressure in<br>the lines can cause serious eye inju-<br>ries. Always wear eye protection. | <b>READ ALL RELATED MANUALS</b><br>Knowledge of all related procedures<br>before you begin work is important.<br>Read and understand all manuals<br>thoroughly. If you do not understand<br>a procedure, ask someone who does. |
|     | WARNING<br>Heed the adjacent instructions to<br>avoid equipment damage or personal<br>injury.                                             | STATIC SENSITIVE COMPONENTS<br>Handling static sensitive electronic<br>components without grounding your<br>body can subject them to damaging<br>voltage potentials.                                                           |

# **Site Considerations**

### **Control Drawing**

Double Wall Tank

NOTE: Intrinsically safe wiring (marked I.S.) shall be installed in accordance with Article 504-20 of the NEC, ANSI/NFPA 70.

Note: conduit requirements are dependent on local electrical regulations. For probe-to-console wiring, shielded cable is required regardless of conduit requirements.



Substitution of components may impair intrinsic safety.

Circuitry within the TLS-50 Console barrier forms an intrinsically safe, energy-limited system. This system makes TLS-50 probes safe for use in



Figure 2. Control Drawing - Example TLS-50 System Site Layout

### **National Electrical Code Compliance**

The following information is for general reference and is not intended to replace recommended National Electric Code (NEC) procedures. It is important for the installer to understand that electrical equipment and wiring located in Class I, Division 1 and 2 installations shall comply with the latest appropriate articles found in the National Electric Code (NFPA 70) and the Automotive and Marine Service Station Code (NFPA 30A), or other local code such as the CEC, Canadian Electrical Code.

#### **PROBE-TO-CONSOLE WIRING**

#### Shielded Cable or Veeder-Root Direct Burial Cable Required

To ensure the best operating systems available, Veeder-Root **REQUIRES** the use of shielded cable for all probes regardless of conduit material or application. In these installations, shielded cable must be rated less than 100 pF/ foot (100 pF/304 mm) and be manufactured with a material suitable for the environment, such as Carol<sup>™</sup> C2534 or Belden<sup>™</sup> 88760, 8760, or 8770.

Note: Throughout this manual, when mentioning any cable being used for probe-to-console wiring, it will be referring to shielded cable.

#### Wire Length

Improper system operation could result in undetected potential environmental and health hazards if the probe-toconsole wire runs exceed 1000 feet (304 m). Wire runs must be less than 1000 feet to meet intrinsic safety requirements.

#### Splices

Veeder-Root recommends that no splices be made in the wire run between a probe junction box and the console. Each splice degrades signal strength and could result in poor system performance.

#### Wire Gauges - Color coded

- Shielded cable must be used in all installations. Probe-to-console wires should be #14 #18 AWG (2.5 to 0.8 mm<sup>2</sup>) stranded copper wire and installed as a Class 1 circuit. As an alternate method when approved by the local authority having jurisdiction, #22 AWG (>0.3 mm<sup>2</sup>) wires such as Belden 88761 may be suitable in installations with the following provisions:
  - Wire run is less than 750 feet (228 m)
  - Capacitance does not exceed 100 pF/foot (100 pF/304 mm)
  - Inductance does not exceed 0.2  $\mu$ H/foot (0.2  $\mu$ H/304 mm)
- Total cable length per installation: 22,000 feet (6700 m).

#### **POWER WIRING**

Wires carrying 120 or 240 Vac from the power panel to the console should be #14 AWG (2.5 mm<sup>2</sup>) copper wire for line, neutral and chassis ground (3); and #12 AWG (4 mm<sup>2</sup>) copper wire for barrier ground (1).

#### **PROBE JUNCTION BOXES**

Weatherproof electrical junction boxes with a gasketed cover are required on the end of each probe conduit run at the manhole location. Gasketing or sealing compound must be used at each entry to the junction box to ensure a waterproof junction. The interior volume of each junction box must be a minimum of 16 cubic inches (262 cm<sup>3</sup>).

Veeder-Root recommends the following junction box or equivalent:

- Appleton Electric Co. JBDX junction box, JBK-B cover, and JB-GK-V gasket.
- Crouse-Hinds Co. GRFX-139 junction box, GRF-10 cover, and GASK-643 gasket.

### **Probe Wiring Safety Issues**

|        | Probes operate in areas where flammable liquids and explosive vapors may be present.                            |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        | Improper installation may result in fire or explosion causing serious injury or death.                          |  |  |  |  |
| $\sim$ | Practice the following:                                                                                         |  |  |  |  |
|        | 1. Read thoroughly and follow the instructions shipped with each probe.                                         |  |  |  |  |
|        | 2. Probe wiring must enter the console only through their designated areas.                                     |  |  |  |  |
|        | <ol><li>Power wires and conduit must not enter the intrinsically safe<br/>compartment of the console.</li></ol> |  |  |  |  |
|        | 4. Substitution of components may impair intrinsic safety.                                                      |  |  |  |  |
|        |                                                                                                                 |  |  |  |  |

Wiring between the console and the probes is of limited electrical power so that there is insufficient energy to ignite fuel. In the console, the low power probe wiring is considered intrinsically safe because it is physically isolated from all high power wiring. To maintain the integrity of this safety feature probe wiring can not share the same conduit with power wiring. In addition, probe cables can only enter the console through the designated intrinsically safe area knockouts.

If the TLS-50 System is being retrofitted into a paved site, you can cut grooves in the pavement, run direct burial cable to the probes, and then seal over the cable grooves, subject to approval of the local authority having jurisdiction.

Before trenching, you should diagram all conduit runs between the console's intended location and its deployed probes. Your site diagram will help you calculate conduit and wiring lengths, and necessary quantities of junction boxes, sealing boxes, clamps, brackets, etc.

Throughout this planning process and in the actual installation, you must follow all latest National Electric Codes, and applicable federal, state, and local codes as regards conduit type, depth below grade, sealing, grounding, wire capacities, direct burial (if permitted), etc.

### **Selecting a Console Location**

|  | Explosive vapors or flammable liquids could be present near locations where fuels are stored or being dispensed. The TLS-50 Console is not explosion proof.                                                          |  |  |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | An explosion or fire resulting in serious injury or death, property loss and equipment damage could occur if the console is installed in a volatile, combustible or explosive atmosphere (Class I, Division 1 or 2). |  |  |  |
|  | Do not install this console in a volatile, combustible, or explosive atmosphere.                                                                                                                                     |  |  |  |

Select a mounting location on the inside of any building. The console must be protected from severe vibration, extremes in temperature and humidity, rain, and other conditions that could harm computerized electronic equipment.

The equipment is designed to operate safely under the following range of conditions:

- Temperature range 0 to 40°C (storage temperature range of -40 to +74°C).
- A maximum relative humidity of 95% RH (non-condensing) at temperatures up to 40°C.
- Console may be powered by either 120 or 240 Vac. A switchmode power supply automatically detects the input voltage (no jumpers required).
- Main supply voltage fluctuations not exceeding ±10%.
- Pollution Degree Category 2.
- · Installation Category II.



Important! Consoles must be installed within the interior of buildings. They are not suitable for any external location.

Ensure that the console is located where neither the console nor its associated cabling will be damaged by doors, furniture, barrows, etc. Consider the ease of routing wiring, ducting, and probe cables to the console. Check that the mounting surface is strong enough to support the console's weight of about 4 pounds.

Important! If the unit requires cleaning, do not use any liquids, wipe only with a clean, dry cloth.

### **Console Installation**

### **Mounting the Console**

Figure 3 illustrates recommended console mounting. Install the console fastening devices to the mounting surface using the hole pattern (6.7" x 5.7") shown in Figure 4. Mounting screws up to 3/16" diameter may be used.

Install metal conduit (1/2" I.P.S.) between the console and the power panel. Figure 4 shows the three designated knockouts (one each on top, left side, and bottom) through which power wiring can safely enter the console.



Figure 3. Recommended Mounting of Console



Figure 4. Console Dimensions and Designated Conduit Knockouts

### Wiring the Console

 Image: Constant of the console contains voltages which can be lethal. It is connected to devices that must be intrinsically safe.

 Image: Constant of the console contains voltages which can be lethal. It is connected to devices that must be intrinsically safe.

 Image: Connecting power wires to a live circuit can cause electrical shock that may result in serious injury or death.

 Image: Connecting power off at the circuit breaker connecting the power supply wires.

 Image: Connecting the power off at the circuit breaker connecting the power supply wires.

 Image: Connecting the power off at the power panel to the console's Power Area knockouts only (1 on top and bottom, ref. Figure 4).

1. Pull four wires between the power panel and the console; three #14 AWG color-coded wires for AC line (L), AC neutral (N) and chassis ground; and one #12 AWG (4 mm<sup>2</sup>) green and yellow wire for barrier ground.

For international applications using 240 Vac, pull four wires between the power panel and a 5 A fused, switched, neon indication spur; three #14 AWG color-coded wires for AC line (L), AC neutral (N) and chassis ground; and one #12 AWG (4 mm<sup>2</sup>) green and yellow wire for barrier ground. Pull four identical wires between the spur and the console.

2. Open the right door of the console and connect the four power/ground wires as shown in [Figure 5]. Do not connect the power wires to breaker panel at this time.



Figure 5. Wiring AC Power to the Console

# **Probe Installation**

### **Probe Manhole Installation**

At each underground probe location, install a 14-inch (355 mm) minimum diameter approved manhole according to the manufacturer's instructions (Note: probes should be located at least 24 inches (610 mm) from the submersible pump to avoid erroneous probe readings when the pump is running). Position the manhole so that there is necessary clearance for junction box installation and wiring.

### Determining Mag Probe Length for Installation in a Dedicated Riser

- 1. Measure the distance from the bottom of the tank to the top of the probe manway this is the minimum probe length (ref. Figure 6).
- 2. The probe canister must be within the riser pipe (minimum length of 10 inches [254mm]).



Figure 6. Determining the Minimum Mag Probe Length

### **Probe Installation**

- 1. Turn OFF power to the console.
- 2. Remove any sludge from the bottom of the tank.
- 3. Check that floats, boot, and cable are assembled correctly on probe (ref. Mag Probe Assembly Manual).
- 4. Gently slide the float(s) to the bottom of the probe shaft before raising the probe. Carefully lower the probe into the riser pipe until the boot rests on the bottom of the tank [See Figure 7 for UST installation or Figure 8 for AST installation].

**CAUTION!** Handle probes carefully. Striking or dropping the probe will result in loss of calibration and could cause permanent damage.



Figure 7. TLS-50 Probe Installation Example - Underground Storage Tank



Figure 8. TLS-50 Probe Installation Example - Above ground Storage Tank

#### SPECIAL INSTRUCTIONS FOR UST'S WITH METAL RISER CAPS

If you are installing the metal cap and adapter ring, screw the ring onto the 4" riser until the gasket contacts the pipe, then use a pipe wrench to tighten it an additional 3/4 turn. Push the cable through the metal cap and cord grip, then clamp the cap onto the ring.

At sites that require installation of a riser adaptor (Phil-Tite M/F 4X4 or equivalent) at the top of the riser, do so following the manufacturer's instructions. Next screw the adapter ring from the Veeder-Root kit (P/N 312020-952) onto the riser adaptor by hand until the gasket contacts the sealing surface. Then use a torque wrench attached to an appropriate strap wrench (K-D Specialty tools nylon strap oil filter wrench, or equivalent) and tighten the ring to 35 - 45 ft-lbs. Loosen the cord grip nut and push the cable through the metal cap and cord grip, then clamp the cap onto the ring (see Figure 9).

Make sure there is a minimal amount of slack between the probe and cap, then tighten the cord grip nut until the cable is held firmly. Push the end of the cable through the field J-box cord grip, then tighten that cord grip nut as well. Splice and seal the wires in the J-box as shown in Figure 12.



Figure 9. Installing the Riser Adapter

### Installing Field Wiring from Probes to TLS-50 Console

Two wiring run methods are commonly used for probes - Shielded wiring pulled through buried, sealed 1/2" rigid conduit (discussed in the following paragraphs); or direct burial cable (discussed on page 15).



### **Buried Rigid Conduit**

The preferred method, especially in new sites before driveway surfaces are paved, is to pull probe wiring through buried 1/2" rigid conduit [Figure 10].



Figure 10. Example Probe Wiring Run in Buried Rigid Conduit

Pull shielded cable consisting of two conductors, color-coded #14-18 AWG stranded copper wire, between the console and the junction box at <u>each</u> probe location (do not gang wires together). Use single lengths of wire with no splices to ensure optimum signal strength.



### **IMPORTANT!** Maximum probe-to-console cable length is 1000 feet (305m).

Since wires for multiple probes may enter the console through a single conduit, it is recommended that you use a different color-code for each wire or individually mark each wire to identify probe inputs. Also, if the intrinsically safe wires enter the building in a wiring trough, only intrinsically safe wires (from TLS-50/-50C probes) can be in the trough. Keep all low power (intrinsically safe) wiring physically isolated from high power wires in all wiring troughs per the NEC.

#### SEALING FIELD CONNECTIONS

- 1. Pull the wires from the probe canister into the junction box. Pull two wires from the console through the seal-off box and into the junction box.
- 2. Using wire nuts, connect the two wires from the probe to the two wires coming from the console. Be sure to observe color codes or tags when making these connections. Figure 11 diagrams a typical probe field wiring connection in the junction box.
- 3. Do NOT terminate drain wire at this location, ground drain wire at console only.
- 4. Seal wire nuts with epoxy sealant using one bag for two-wire nut connections (Figure 12).
- 5. Push the tie-wrapped, epoxy sealed bag into the junction box. Replace and tighten the junction box cover.



Figure 11. Probe Field Wiring Connection



#### Instructions:

- NOTE: When temperature is below 50°F (10°C), keep resin in a warm place prior to mixing (e.g., in an inside pocket next to body).
- 1. Open epoxy sealant package, and remove resin pak.
- 2. Holding resin pak as shown in A, bend pak along long length.
- As shown in B, firmly squeeze the RED SIDE of the resin, forcing it through the center seal and into BLACK SIDE.
- 4. Mix thoroughly to a uniform color by squeezing contents back and forth 25-30 times.
- Squeeze mixed, warm resin into one end of bag and cutoff other end.
- Slowly insert wiring connections into sealing pack until they fit snugly against the opposite end as shown in C.
- Twist open end of bag and use tie wrap to close it off and position the tie wrapped end up until the resin jells.

CAUTION: Epoxy sealant is irritating to eyes, respiratory system, and skin. Can cause allergic skin reaction. Contains: epoxy resin and Cycloaliphatic epoxycarboxylate.

**Precautions:** Wear suitable protective clothing, gloves, eye, and face protection. Use only in well ventilated areas. Wash thoroughly before eating, drinking, or smoking.

Figure 12. Epoxy Sealing Connections

consoles\epxy2w.eps

### **Direct Burial Cable - Probe to Console Field Wiring**

An alternative to trenching through existing pavement is to use direct burial cable.



### IMPORTANT! Maximum probe-to-console cable length is 1000 feet (305m).

Prior to installing direct burial cable with epoxy splices, consult with the local authority having jurisdiction. Use of direct burial cable is only allowed in locations where local codes permit the use of buried cable.

The direct burial method requires grinding a 1/4" to 3/8" wide by 1-1/4" deep groove (adding 1/4" of depth for each additional cable) in the pavement surface, laying Veeder-Root supplied direct burial cable down in the bottom of the groove, laying an expanded polyethylene foam backer rod over the cable(s), and then a placing a 1/4" to 1/2" bead of Veeder-Root recommended silicone sealant over the backer rod to within a minimum of 3/8" below the pavement surface [see Figure 13].

If you decide to use the direct burial method, you should order the Veeder-Root Direct Burial Cable Preparation Kit, P/N 848100-500.



Figure 13. Example Probe Wiring Run via Direct Burial Cable

### **DIRECT BURIAL CABLE FIELD WIRING**



When using direct burial cable for probe-to-console wiring runs, the wiring connections are the same as shown in Figure 11 on page 14, but the sealing materials and procedure is completely different. If you are using Direct Burial Cable you seal the field wiring connections as instructed in the Direct Burial Cable Installation Manual.

### **Connecting Probes to the Console**



### Precautions To Follow When Connecting Probes to TLS-50 Console

To The Installer! You Must Read And Understand This Information.

### **INPUT/OUTPUT WIRING POSITIONS AND LABELING**

In all cases, the devices wired to the console's input/output terminal blocks must be recorded to prevent improper replacement during installation or service. A circuit directory is listed below for this purpose.

During programming, the probes wired to each position are identified and stored in memory. If a probe is removed and reconnected to a different set of input terminals after programming, the system will not properly recognize the data being received.

#### Wiring Assignments

- 1. Identify all probe wires according to their terminal block location using the self-adhesive numbering labels furnished. Accurately record on the circuit directory in Figure 14 the location of each probe **as you attach wires** to the probe input terminal block.
- 2. Important! Once a device has been wired to certain terminals and the system has been programmed, the wires from that device may not be relocated to other terminals without reprogramming the system.

| Probe Number    | TANK Number & Product |
|-----------------|-----------------------|
| PROBE 1 IN TANK |                       |
| PROBE 2 IN TANK |                       |
| PROBE 3 IN TANK |                       |
| PROBE 4 IN TANK |                       |
| PROBE 5 IN TANK |                       |
| PROBE 6 IN TANK |                       |
|                 | consoles\tt           |

Figure 14. Probe Installation Directory

#### **Grounding Probe Shields and Drain Wires**

Connect probe cable shields and drain wires to ground in the console only, not at the field junction boxes. Do not ground both ends of the shield.

#### **CONNECTING PROBES TO THE CONSOLE - OBSERVE POLARITY**

Connect the two color-coded/marked wires from the each probe to the appropriate terminals of the Probe Terminal Block as shown in Figure 15.



Figure 15. Connecting Probe Wiring to Console (TLS-50C has 3 probe inputs only)

### **System Setup Security**

To protect against unauthorized access to system operation DIP switch 4 of SW1 on the Power Supply board lets you lockout setup and diagnostic menus after making initial programming (for consoles w/display only). Consoles are shipped from the factory with this switch in the open (disabled) position.

See Figure 15 for location of this switch. Figure 16 shows the switch in the closed position, enabling setup lockout. Switch 2 and Switch 3 are not used and can be in any position.



Figure 16. DIP switch 4 in closed position to enable menu lockout

### **Overfill Alarm Relay**

All consoles except those having form numbers 8469X0-060 and 8469X0-230 have one dry contact relay output that closes when an overfill alarm is activated. You can connect an external audible/visual warning device to this relay.

Important! Note these Output Relay Connection Restrictions:

- 1. Do not connect output relays to a device that draws more than 2 amperes of current. Output power: output relay contact, resistive load 120/240 Vac, 2 A max.
- 2. Alarm relays cannot be used for flow control. Alarm relays provide only a momentary closure and cannot actuate flow control devices such as valves and pump motor relays for extended periods of time.



With power to the console turned Off, connect the two wires from the external warning device to the either of the two overfill relay terminals (J5) [see Figure 17].



Figure 17. Connecting I/O Devices to Console

# Applying Power to System

### Cold Boot - Initial Power Up (Consoles w/Display)

Once all devices are connected to the console, attach the console power wires to the appropriate power panel connections. Close the front panel of the console. Switch on the AC power breaker. The system will automatically run a cold boot self-diagnostic program when you power up the console for the first time:

| <u>Test Passed</u> | Test Failed | Action (If Failed |       | <u>4)</u> |
|--------------------|-------------|-------------------|-------|-----------|
| RAM TEST - OK      | RAM FAIL    | Replace C         | CPU b | oard      |
| ROM TEST - OK      | ROM FAIL    | u                 | "     | u         |
| COLD BOOT          |             |                   |       |           |
| EEPROM TEST - OK   | EEPROM FAIL | "                 | u     | u         |
| STARTUP COMPLETE   |             |                   |       |           |

Following a cold boot the display will read:

NO TANKS CONFIGURED

Follow the Setup instructions in the TLS-50 Setup and Operation Manual to program the system.

### Cold Boot - Initial Power Up (Consoles w/o Display)

Once all devices are connected to the console, attach the console power wires to the appropriate power panel connections. Close the front panel of the console. Switch on the AC power breaker. The system will automatically run a cold boot self-diagnostic program when you power up the console for the first time. Wait 30 seconds and then follow the Setup instructions in the TLS-50 Setup and Operation Manual to program the system.

### Test Failed

Unit fails to communicate

#### Action (If Failed)

Check "RS-232 Serial Communication Setup" on page 24. If comm settings are correct, replace CPU board.

### **Cold Boot - RAM Clear**

If the system has previously been setup, a cold boot can be initiated and the system reset (such as for a software upgrade) as follows:

### **CONSOLES WITH DISPLAY**

Move the RAM clear jumper (J3 in Figure 5) off of pins 1 and 2 and onto pins 2 and 3. The display will acknowledge the RAM clear request with the message: **RAM CLEAR**, then turn the power Off. Move the jumper back onto pins 1 and 2.

### CONSOLES WITHOUT DISPLAY

Turn off the power to the unit, move the RAM clear jumper (J3 in Figure 5) off of pins 1 and 2 and onto pins 2 and 3. Turn on the power for 5 seconds, then turn the power off. Move the jumper back onto pins 1 and 2.

### Warm Boot

#### CONSOLES WITH DISPLAY

Once the system is setup, every time power to consoles is switched Off and On, the software will run a selfdiagnostic warm boot program and display the test results:

| Test Passed      | Test Failed | Action ( | f Fail | <u>ed)</u> |
|------------------|-------------|----------|--------|------------|
| RAM TEST - OK    | RAM FAIL    | Replace  | CPU    | board      |
| ROM TEST - OK    | ROM FAIL    | "        | "      | "          |
| WARM BOOT        |             |          |        |            |
| STARTUP COMPLETE |             |          |        |            |

If a fault is detected an error message will be displayed and the system will halt. When the warm boot completes the display returns to the top level status message.

### CONSOLES WITHOUT DISPLAY

Once the system is setup, every time power to the console is switched Off and On, the software will run a selfdiagnostic warm boot program. Wait 30 seconds and the system should return to normal operation with previous setups intact.

# **RS-232 Communications**

The RS-232 port, provided with consoles having form numbers 8469X0-260, -230, and -460, connects to a user-selected serial printer, modem or terminal.

### **RS-232 Peripheral Equipment Requirements**

Any peripheral equipment connected to an RS-232 serial port must meet the following criteria:

- 1. Peripheral equipment must be UL listed.
- 2. The equipment must have an EIA standard RS-232C or RS-232D communications protocol.
- 3. The equipment must NOT be installed over or in a hazardous location.

### **RS-232 Connections**

#### TO A DEVICE LESS THAN 50 FEET FROM THE CONSOLE

Veeder-Root recommends that you use a null-modem cable no longer than 50 feet for direct connections between the console and a remote device. Cable runs longer than 50 feet can result in data errors, component damage, or both.

#### TO A DEVICE MORE THAN 50 FEET FROM THE CONSOLE

If cable runs longer than 50 feet are needed, two short-haul modems should be used, one at the console and one at the remote device. We recommend an asynchronous short-haul modem, Black Box model ME800A, or equivalent at the console and at the remote device. For more information, you can contact Black Box by phone: 724-746-5500, Fax: 724-746-0746, or web: *http://www.blackbox.com* 

Figure 18 illustrates how to connect two short-haul modems between the console RS-232 Interface Module's or Auxiliary RS-232 Interface Module's DB-25 connector and the remote device.



Figure 18. Console Connected to a Remote Device via Short-Haul Modem

### **Surge Protection for Communication Devices**

In locations that are subject to high levels of noise and power surges, the use of a surge protector is recommended. The following models are available from B&B Electronics by phone: 1-815- 433-5100, or web: *http://www.bb-elec.com:* 

- Telephone Line Surge Protector, model TLSP
- RS-232 Surge Protector, model 232DSP

### **System Serial Security**

To protect against unauthorized access to system operation DIP switch 1 of SW1 on the Power Supply board lets you enter a 6-digit security code before the system will respond to a serial command (only applies to consoles having form numbers 8469X0-260, 230, & -460). If enabled, the default serial security code is 000000. The security code itself can be changed with a serial command (see "Function Code: 504" on page 31). Consoles are shipped from the factory with this switch in the open (disabled) position.

See Figure 15 on page 17 for location of this switch. Figure 19 shows the switch in the closed position, enabling the security feature.

Switch 2 and Switch 3 are not used and can be in any position.



Figure 19. Console Dip Switch Settings

### **RS-232 Serial Communication Setup**

Table 2 shows the available RS-232 setup options and defaults by console form number.

| Setup               | Options                             | Console Form Numbers   | Default |
|---------------------|-------------------------------------|------------------------|---------|
| Interface mode type | Printer, modem, or serial           | 8469X0-260             | Printer |
|                     |                                     | 8469X0-230, -460       | Serial  |
| Baud rate           | 300, 600, 1200, 2400, 4800, or 9600 | 8469X0-260, -460       | 9600    |
|                     |                                     | 8469X0-230             | 2400    |
| Parity              | None, odd, or Even                  | 8469X0-260, -460       | None    |
|                     |                                     | 8469X0-230             | Even    |
| Data length         | 8 or 7                              | 8469X0-260, -460       | 8       |
|                     |                                     | 8469X0-230             | 7       |
| Stop bits           | 1 or 2                              | 8469X0-230, -260, -460 | 1       |

| Table | 2 | RS | 232 | Setur | 0 | otions  | and | Defaults |
|-------|---|----|-----|-------|---|---------|-----|----------|
| IUNIC |   |    | 202 | oolup |   | 0110110 | unu | Donauno  |

| Setup              | Options                                 | Console Form Numbers   | Default  |
|--------------------|-----------------------------------------|------------------------|----------|
| Handshaking        | None, XON/XOFF, or hardware             | 8469X0-260             | XON/XOFF |
|                    |                                         | 8469X0-230, -460       | None     |
| Printer page eject | Yes or no                               | 8469X0-260             | No       |
|                    |                                         | 8469X0-230, -460       | N/A      |
| Answer on options  | 0 to 9                                  | 8469X0-260             | No       |
|                    |                                         | 8469X0-230, -460       | N/A      |
| Serial language    | English, French, Spanish, or Portuguese | 8469X0-230, -260, -460 | English  |

#### Table 2.- RS-232 Setup Options and Defaults

### **DB-9 Connector Pin-Outs**

Communicating with the Console from a remote computer is done through a RS-232 serial port (DB-9 connector) on the bottom of the console.

Pin layout to connect the Console's Serial Interface DB-9 connector to a 25-pin computer terminal connector are shown in Figure 20. These connections are standard for "AT" style modem cables.

| Conso<br>(DB-9 Con       | ole<br>nector) | Computer Termin<br>(DB-25 Connecto |    | Terminal<br>nnector) |
|--------------------------|----------------|------------------------------------|----|----------------------|
| CD                       | 1              |                                    | 8  | DCD                  |
| RXD                      | 2              |                                    | 2  | TXD                  |
| TXD                      | 3              |                                    | 3  | RXD                  |
| DTR                      | 4              |                                    | 20 | DTR                  |
| GND                      | 5              |                                    | 7  | GND                  |
| DSR                      | 6              |                                    | 6  | DSR                  |
| RTS                      | 7              |                                    | 4  | RTS                  |
| CTS                      | 8              |                                    | 5  | CTS                  |
| N/C                      | 9              |                                    | 22 | Ring Indicator       |
| consoles\tls50\\rs-232.e | ps             |                                    |    |                      |

Figure 20. DB9, RS-232 Pin-Outs

# **RS-232** Commands

| 001 | System Reset                                           | page 27 |
|-----|--------------------------------------------------------|---------|
| 003 | Remote Alarm Reset                                     | page 28 |
| 201 | In-Tank Inventory Report                               | page 29 |
| 205 | In-Tank Status Report                                  | page 30 |
| 504 | Set RS-232 Security Code                               | page 31 |
| 50C | Set Printer Page Eject Enable.                         | page 32 |
| 50D | Set Temperature Compensation Volume Display Enable     | page 33 |
| 50E | Set Temperature Compensation Value.                    | page 34 |
| 517 | Set Units of Measurement and Language (ext. lang. set) | page 35 |
| 601 | Set Tank Configuration                                 | page 36 |
| 604 | Set Tank 1-Point (Full Height) Volume                  | page 37 |
| 605 | Set Tank 4-Point (Full, 3/4, 1/2, & 1/4) Volume        | page 38 |
| 606 | Set Tank 20 Point Full, 95%, 90%, Volumes              | page 39 |
| 607 | Set Tank Diameter                                      | page 40 |
| 608 | Set Tank Tilt                                          | page 41 |
| 609 | Set Tank Thermal Coefficient of Expansion Volume       | page 42 |
| 60A | Set Tank Linear Calculated Full Volume                 | page 43 |
| 621 | Set Tank Low Level Limit                               | page 44 |
| 624 | Set Tank High Water Level Limit                        | page 45 |
| 628 | Set Tank Maximum Volume Limit                          | page 46 |
| 638 | Set Tank Overfill Limit                                | page 47 |
| 881 | Set Communication Port Data                            | page 48 |
| 882 | Initialize Communication Port Data                     | page 49 |
| 883 | Set Communication Port Language                        | page 50 |
| 884 | Set Serial Port Handshaking                            | page 51 |
| 902 | System Revision Level Report                           | page 52 |
| A01 | Probe Type and Serial Number                           | page 53 |
| A02 | Probe Calibration Values                               | page 54 |
| A10 | Probe Last Sample Buffers                              | page 55 |
| A11 | Probe Fast Average Buffers                             | page 56 |
| A12 | Probe Standard Average Buffers                         | page 57 |

Function Type: System Reset

### Command Format:

Display: <SOH>S00100 Computer: <SOH>s00100

#### Typical Response Message, Display Format:

<SOH> S00100 <ETX>

#### Typical Response Message, Computer Format:

<SOH>\$0010000000000&CCCC<ETX>

#### Notes:

000000000 - Not Used.
 && - Data Termination Flag
 CCCC - Message Checksum

#### Version 1

Function Type: Remote Alarm Reset

Command Format: Display: <SOH>S00300 Computer: <SOH>s00300

#### Typical Response Message, Display Format:

<SOH> S00300 <ETX>

#### Typical Response Message, Computer Format:

<SOH>\$00300000000&CCCC<ETX>

#### Notes:

| 1. | 0000000000 | - | Not Used              |
|----|------------|---|-----------------------|
| 2. | &&         | - | Data Termination Flag |
| 3. | CCCC       | - | Message Checksum      |

Version 1

| F        | unction Type:    | In-Tank Inventory Report                        | Version 1 |
|----------|------------------|-------------------------------------------------|-----------|
| Co       | mmand Format:    |                                                 |           |
|          | Display:         | <soh>I201TT</soh>                               |           |
|          | Computer:        | <soh>i201TT</soh>                               |           |
| Typical  | . Response Mes   | sage, Display Format:                           |           |
|          | -<br><soh></soh> |                                                 |           |
|          | I201TT           |                                                 |           |
|          |                  | TANK VOLUME TC VOLUME HEIGHT WATER TEM          | IP        |
|          |                  | 1 5329 5413 48.9 0.0 37.                        | 3         |
|          | <etx></etx>      |                                                 |           |
| Turnical | Pernonge Mer     | sage Computer Format:                           |           |
| Typical  |                  | 00000000000000000000000000000000000000          |           |
|          | <50H>12011100    |                                                 |           |
|          |                  | TIPSSSSNNFFFFFFF&&CCCC <eix></eix>              |           |
| Notes    |                  |                                                 |           |
| 1        | 000000000 -      | Inuced                                          |           |
| ±.<br>2  |                  | Tark Number (Decimal 00 - all)                  |           |
| 2.       | 11 -             | Tank Number (Decimar, 00 = all)                 |           |
| 3.       | 0 -              |                                                 |           |
| 4.       | SSSS -           | Tank Status Bits:                               |           |
|          |                  | Bit 1 - (LSB) Unused                            |           |
|          |                  | Bit 2 - Unused                                  |           |
|          |                  | Bit 3 - Invalid Fuel Height Alarm (MAG Probe    | s Only)   |
|          |                  | Bit 4-16 - Unused                               |           |
| 5.       | NN –             | Number of eight character Data Fields to follow | (Hex)     |
| 6.       | FFFFFFFF -       | ASCII Hex IEEE float:                           |           |
|          |                  | 1. Volume                                       |           |
|          |                  | 2. TC Volume                                    |           |
|          |                  | 3. Ullage                                       |           |
|          |                  | 4. Height                                       |           |
|          |                  | 5. Water                                        |           |
|          |                  | 6. Temperature                                  |           |
|          |                  | 7. Water Volume                                 |           |
| 7.       | - 33             | Data Termination Flag                           |           |
| 8.       | CCCC -           | Message Checksum                                |           |
|          |                  |                                                 |           |

Function Type: In-Tank Status Report

Version 1

### Command Format:

Display: <SOH>1205TT Computer: <SOH>i205TT

#### Typical Response Message, Display Format:

```
<SOH>
I205TT
TANK STATUS
1 ALL FUNCTIONS NORMAL
<ETX>
```

#### Typical Response Message, Computer Format:

```
<SOH>i205TT000000000TTnnAA...
TTnnAA&&CCCC<ETX>
```

#### Notes:

1. 000000000 - Unused 2. TT - Tank Number (Decimal, 00 = all) 3. nn - Number of alarms active for tank (Hex, 00 = none) 4. AA - Active tank alarm type: 01 = Unused02 = Unused03 = Tank High Water Alarm 04 = Tank Overfill Alarm 05 = Tank Low Product Alarm 06 = Unused07 = Unused08 = Tank Invalid Height Alarm 09 = Tank Probe Out Alarm 10 = Unused11 = Unused12 = Tank Maximum Level Alarm 13 through 26 = Unused27 = Tank Low Temperature Warning 5. && - Data Termination Flag 6. CCCC - Message Checksum

| Function Type:  | Set System | (RS-232) | Security Code | Version 1 |
|-----------------|------------|----------|---------------|-----------|
|                 |            |          |               |           |
| Command Format: |            |          |               |           |

| <u>Set:</u> |                         | Inquire:  |                   |
|-------------|-------------------------|-----------|-------------------|
| Display:    | <soh>S50400aaaaaa</soh> | Display:  | <soh>150400</soh> |
| Computer:   | <soh>s50400aaaaaa</soh> | Computer: | <soh>i50400</soh> |

#### Typical Response Message, Display Format:

<SOH> I50400 aaaaaa <ETX>

#### Typical Response Message, Computer Format:

<SOH>i50400000000000aaaaaa&CCCC<ETX>

#### Notes:

| 1. | 0000000000 | - | Not Used.                                                       |
|----|------------|---|-----------------------------------------------------------------|
| 2. | aaaaaa     | - | Current Security Code (6 ASCII characters from 20 Hex - 7E Hex) |
| 3. | & &        | - | Data Termination Flag                                           |
| 4. | CCCC       | - | Message Checksum                                                |
# Function Code: 50C

| Function Type:       | Set Remote Printer Pag | je Eject Flag | V         | ersion 1          |
|----------------------|------------------------|---------------|-----------|-------------------|
| Command Format:      |                        |               |           |                   |
| <u>Set:</u>          |                        |               | Inquire:  |                   |
| Display:             | <soh>S50C00f</soh>     |               | Display:  | <soh>I50C00</soh> |
| Computer:            | <soh>s50C00f</soh>     |               | Computer: | <soh>i50C00</soh> |
| Typical Response Mes | sage, Display Format:  |               |           |                   |
| <soh></soh>          |                        |               |           |                   |
| I50C00               |                        |               |           |                   |
| f                    |                        |               |           |                   |
| <etx></etx>          |                        |               |           |                   |

## Typical Response Message, Computer Format:

<SOH>i50C0000000000f&&CCCC<ETX>

| 1. | 0000000000 | - Not Used              |
|----|------------|-------------------------|
| 2. | f          | - Page Eject Flag:      |
|    |            | 0 = Disabled            |
|    |            | 1 = Enabled             |
| 3. | &&         | - Data Termination Flag |
| 4. | CCCC       | - Message Checksum      |

# Function Code: 50D

| Function Type: | Set Print | Temperature | Compensation | Flag | Version 1 |
|----------------|-----------|-------------|--------------|------|-----------|
|                |           |             |              |      |           |

Command Format:

| <u>Set:</u> |                    | Inguire:  |                   |
|-------------|--------------------|-----------|-------------------|
| Display:    | <soh>S50D00f</soh> | Display:  | <soh>I50D00</soh> |
| Computer:   | <soh>s50D00f</soh> | Computer: | <soh>i50D00</soh> |

## Typical Response Message, Display Format:

<SOH> 150D00 f <ETX>

## Typical Response Message, Computer Format:

<SOH>i50D0000000000f&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used                            |
|----|------------|---|-------------------------------------|
| 2. | f          | - | Print Temperature Compensation Flag |
|    |            |   | 0 = Disable                         |
|    |            |   | 1 = Enable                          |
| 3. | &&&        | - | Data Termination Flag               |
| 4. | CCCC       | - | Message Checksum                    |

## **Function Code: 50E**

| Function Type:  | Set Temperature Compensa  | ation Value | Version 1               |
|-----------------|---------------------------|-------------|-------------------------|
| Command Format: |                           |             |                         |
| Set:            |                           | Inc         | uire:                   |
| Display:        | <soh>S50E00TTT.T</soh>    | Dis         | play: <soh>I50E00</soh> |
| Computer:       | <soh>s50E00FFFFFFFF</soh> | Comp        | uter: <soh>i50E00</soh> |
|                 |                           |             |                         |

## Notes:

| 1. | TTT.T    | - | Compensation | Temperature, | Degrees | and  | tenths  | (Deci | lmal)  |
|----|----------|---|--------------|--------------|---------|------|---------|-------|--------|
| 2. | FFFFFFFF | - | Compensation | Temperature, | Degrees | (ASC | CII Hex | IEEE  | float) |

## Typical Response Message, Display Format:

<SOH> I50E00 TTT.T <ETX>

## Typical Response Message, Computer Format:

<SOH>i50E0000000000FFFFFFF&&CCCC<ETX>

## Notes:

000000000 - Not Used.
 FFFFFFF - Compensation Temperature, Degrees (ASCII Hex IEEE float)
 && - Data Termination Flag
 CCCC - Message Checksum

```
Function Code: 517
     Function Type: Set System Type & Language Flags
                                                      Version 1
    Command Format:
               Set:
                                                          Inquire:
           Display: <SOH>S51700ULL
                                                          Display: <SOH>151700
          Computer: <SOH>s51700ULL
                                                          Computer: <SOH>i51700
Typical Response Message, Display Format:
    <SOH>
    I51700
    U
    LL
    <ETX>
Typical Response Message, Computer Format:
    <SOH>i51700000000000ULL&&CCCC<ETX>
Notes:
    1. 000000000 - Not Used.
    2.
                U - System Units:
                       1 = U.S
                       2 = Metric
    3.
               LL - System Language:
                       1 = English
                       2 = French
                       3 = Spanish
                       4 = Not Used
                       5 = Portuguese
                       6 = Not Used
                       7 = Not Used
                       8 = Not Used
                       9 = Not Used
                       10 = Not Used
                       11 = Not Used
                       12 = Chinese
    4.
               && - Data Termination Flag
```

|      | Function T        | 7    | Version 1 |                                 |                 |                   |
|------|-------------------|------|-----------|---------------------------------|-----------------|-------------------|
|      |                   | P    | •         |                                 |                 | 0101011           |
|      | Command Form      | nat  | :         |                                 |                 |                   |
|      | 1                 | Set  | :         |                                 | <u>Inquire:</u> |                   |
|      | Disp              | Lay  | :         | <soh>S601TTf</soh>              | Display:        | <soh>I601TT</soh> |
|      | Comput            | cer  | :         | <soh>s601TTf</soh>              | Computer:       | <soh>i601TT</soh> |
|      |                   |      |           |                                 |                 |                   |
| Турі | cal Response      | Me   | ss        | age, Display Format:            |                 |                   |
|      | <soh></soh>       |      |           |                                 |                 |                   |
|      | I601TT            |      |           |                                 |                 |                   |
|      | I<br>~FTY~        |      |           |                                 |                 |                   |
|      |                   |      |           |                                 |                 |                   |
|      |                   |      |           |                                 |                 |                   |
| Typi | cal Response      | Me   | ss        | age, Computer Format:           |                 |                   |
|      | <soh>i601TT</soh> | 000  | 00        | 00000TTf                        |                 |                   |
|      |                   |      |           | TTf&&CCCC <etx></etx>           |                 |                   |
|      |                   |      |           |                                 |                 |                   |
| Note | s:                |      |           |                                 |                 |                   |
|      | 1. 00000000       | 00 - | -         | Not Used                        |                 |                   |
|      | 2                 | Τ -  | -         | Tank Number (Decimal, 00 = all) |                 |                   |
|      | 3.                | f ·  | -         | Tank Configuration Flag:        |                 |                   |
|      |                   |      |           | 0 = Off                         |                 |                   |
|      |                   |      |           | 1 = On                          |                 |                   |
|      | 4. 8              |      | -         | Data Termination Flag           |                 |                   |
|      | 5. CCC            | CC - | -         | Message Checksum                |                 |                   |
|      |                   |      |           |                                 |                 |                   |

## Notes:

| 1. | TT       | - | Tank | Number | (Decimal | ., 00 = | all) |      |        |
|----|----------|---|------|--------|----------|---------|------|------|--------|
| 2. | VVVVVV   | - | Full | Height | Volume,  | (Decima | al)  |      |        |
| 3. | FFFFFFFF | - | Full | Height | Volume,  | (ASCII  | Hex  | IEEE | float) |

## Typical Response Message, Display Format:

<SOH> I604TT TT P VVVVVV <ETX>

## Typical Response Message, Computer Format:

<SOH>i604TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

| 1. | 000000000 - | Not Used.                                  |
|----|-------------|--------------------------------------------|
| 2. | TT -        | Tank Number (Decimal, 00 = all)            |
| 3. | FFFFFFFF -  | Full Height Volume, (ASCII Hex IEEE float) |
| 5. | && -        | Data Termination Flag                      |
| 6. | CCCC -      | Message Checksum                           |

Function Type: Set Tank 4-Point (Full, 3/4, 1/2, & 1/4 Height) Volumes Version 1

| Command Format: |                                               |                 |                   |
|-----------------|-----------------------------------------------|-----------------|-------------------|
| <u>Set:</u>     |                                               | <u>Inquire:</u> |                   |
| Display:        | <soh>S605TTGGGGGGggggggGGGGGGgggggg</soh>     | Display:        | <soh>I605TT</soh> |
| or:             | <soh>S605TTGGGG,gggg,GGGG,ggg</soh>           |                 |                   |
| Computer:       | <soh>s605TTFFFFFFfffffffffFFFFFffffffff</soh> | Computer:       | <soh>i605TT</soh> |

#### Notes:

| 1. | TT -      | Tank Number (Decimal, 00 = all)                    |
|----|-----------|----------------------------------------------------|
| 2. | GGGGGG -  | Full Height Volume, Gallons (Decimal)              |
| 3. | aaaaaa -  | 3/4 Height Volume, Gallons (Decimal)               |
| 4. | GGGGGG -  | 1/2 Height Volume, Gallons (Decimal)               |
| 5. | aaaaaa -  | 1/4 Height Volume, Gallons (Decimal)               |
| 6. | FFFFFFF - | Full Height Volume, Gallons (ASCII Hex IEEE float) |
| 7. | fffffff - | 3/4 Height Volume, Gallons (ASCII Hex IEEE float)  |
| 8. | FFFFFFF - | 1/2 Height Volume, Gallons (ASCII Hex IEEE float)  |
| 9. | fffffff - | 1/4 Height Volume, Gallons (ASCII Hex IEEE float)  |

#### Typical Response Message, Display Format:

```
<SOH>
I605TT
1 9728 7296 4864 2432
<ETX>
```

## Typical Response Message, Computer Format:

| 1. | 000000000 - | Not Used.                                          |
|----|-------------|----------------------------------------------------|
| 2. | TT -        | Tank Number (Decimal, 00 = all)                    |
| З. | FFFFFFF -   | Full Height Volume, Gallons (ASCII Hex IEEE float) |
| 4. | fffffff -   | 3/4 Height Volume, Gallons (ASCII Hex IEEE float)  |
| 5. | FFFFFFF -   | 1/2 Height Volume, Gallons (ASCII Hex IEEE float)  |
| 6. | fffffff -   | 1/4 Height Volume, Gallons (ASCII Hex IEEE float)  |
| 7. | && -        | Data Termination Flag                              |
| 8. | CCCC -      | Message Checksum                                   |

Function Type: Set Tank 20 Point Full, 95%, 90%,... Volumes Version 1

### Command Format:

| <u>Set:</u> |                                          | <u>Inquire:</u> |                   |
|-------------|------------------------------------------|-----------------|-------------------|
| Display:    | <SOH $>$ S606TTGGGGGGGggggggGGGGGGgggggg | Display:        | <soh>I606TT</soh> |
| or:         | <soh>S606TTGGGG,gggg,GGGG,</soh>         |                 |                   |
| Computer:   | <soh>s606TFFFFFFF</soh>                  | Computer:       | <soh>i606TT</soh> |

#### Notes:

| 1. | TT           | - | Tank Num | mbeı | r  | (Decimal, | 00=all) |                        |
|----|--------------|---|----------|------|----|-----------|---------|------------------------|
| 2. | GGGGGGgggggg | - | Series o | of 2 | 20 | Volumes,  | Gallons | (Decimal)              |
| 3. | FFFFFFFF     | - | Series d | of 2 | 20 | Volumes,  | Gallons | (ASCII Hex IEEE float) |

#### Typical Response Message, Display Format:

<SOH> I606TT JAN 22, 1996 3:16 PM

TANK 20 POINT VOLUMES

| TANK | PRODUCT | LABEL    |      | GALLONS |      |      |
|------|---------|----------|------|---------|------|------|
| 1    | REGULAR | UNLEADED | 9720 | 9234    | 8748 | 8262 |
|      |         |          | 7776 | 5 7290  | 6804 | 6318 |
|      |         |          | 5832 | 2 5346  | 4860 | 4372 |
|      |         |          | 3888 | 3402    | 2916 | 2430 |
|      |         |          | 1944 | 1458    | 972  | 486  |
|      |         |          |      |         |      |      |

< ETX >

#### Typical Response Message, Computer Format:

<SOH>1606TT000000000TTFFFFFFF...

TTFFFFFFFF&&CCCC<ETX>

| 1. | 00000000000 | - | Not Used.                                            |
|----|-------------|---|------------------------------------------------------|
| 2. | TT          | - | Tank Number (Decimal, 00 = all)                      |
| 3. | FFFFFFFF    | - | Series of 20 Volumes, Gallons (ASCII Hex IEEE float) |
| 4. | &&          | - | Data Termination Flag                                |
| 5. | CCCC        | - | Message Checksum                                     |

| Function | on Type: | Set Tank Diameter               | Version 1       |                   |  |
|----------|----------|---------------------------------|-----------------|-------------------|--|
| Command  | Format:  |                                 |                 |                   |  |
|          | Set:     |                                 | <u>Inquire:</u> |                   |  |
| :        | Display: | <soh>S607TTHHH.HH</soh>         | Display:        | <soh>I607TT</soh> |  |
| C        | omputer: | <soh>s607TTFFFFFFF</soh>        | Computer:       | <soh>i607TT</soh> |  |
| Notes:   |          |                                 |                 |                   |  |
| 1.       | TT -     | Tank Number (Decimal, 00 = all) |                 |                   |  |

| ±• | 11         | Tame Namber (Deermar, 00 - arr)    |
|----|------------|------------------------------------|
| 2. | HHH.HH -   | Tank Diameter (Decimal)            |
| 3. | FFFFFFFF - | Tank Diameter (ASCII Hex IEEE floa |

## Typical Response Message, Display Format:

<SOH> I607TT TT HHH.HH <ETX>

## Typical Response Message, Computer Format:

<SOH>i607TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used.                             |
|----|------------|---|---------------------------------------|
| 2. | ТТ         | - | Tank Number (Decimal, 00 = all)       |
| 3. | FFFFFFFF   | - | Tank Diameter, (ASCII Hex IEEE float) |
| 4. | & &        | - | Data Termination Flag                 |
| 5. | CCCC       | - | Message Checksum                      |

| Function Type:  | Set Tank Tilt | Version 1 |
|-----------------|---------------|-----------|
| Command Format: |               |           |
| Set:            |               | Inquire:  |

| Dec.      |                           | Indatte.  |                   |
|-----------|---------------------------|-----------|-------------------|
| Display:  | <soh>S608TTHHH.HH</soh>   | Display:  | <soh>I608TT</soh> |
| Computer: | <soh>s608TTFFFFFFFF</soh> | Computer: | <soh>i608TT</soh> |

### Notes:

| 1. | TT       | - | Tank | Number | (Decimal  | , 00 = | all)   |
|----|----------|---|------|--------|-----------|--------|--------|
| 2. | HHH.HH   | - | Tank | Tilt,  | (Decimal) |        |        |
| 3. | FFFFFFFF | - | Tank | Tilt,  | (ASCII He | x IEEE | float) |

## Typical Response Message, Display Format:

<SOH> I608TT TT HHH.HH <ETX>

## Typical Response Message, Computer Format:

<SOH>i608TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used.                         |
|----|------------|---|-----------------------------------|
| 2. | ТТ         | - | Tank Number (Decimal, 00 = all)   |
| 3. | FFFFFFFF   | - | Tank Tilt, (ASCII Hex IEEE float) |
| 4. | & &        | - | Data Termination Flag             |
| 5. | CCCC       | - | Message Checksum                  |

| Function Type:  | Set Tank Thermal H      | Expansion Coefficient | V               | Version 1         |
|-----------------|-------------------------|-----------------------|-----------------|-------------------|
| Command Format: |                         |                       |                 |                   |
| Set:            |                         |                       | <u>Inquire:</u> |                   |
| Display:        | <soh>S609TTc.cccc</soh> | CC                    | Display:        | <soh>I609TT</soh> |
| Computer:       | <soh>s609TTFFFFFF</soh> | FF C                  | omputer:        | <soh>i609TT</soh> |
|                 |                         |                       |                 |                   |
| Notes:          |                         |                       |                 |                   |
| 1. TT -         | Tank Number (Deci       | imal, 00 = all)       |                 |                   |

| т. | 11 -       | Tank Number (Decimar, 00 - all)                      |
|----|------------|------------------------------------------------------|
| 2. | c.cccccc - | Thermal Expansion Coefficient (decimal)              |
| 3. | FFFFFFFF - | Thermal Expansion Coefficient (ASCII Hex IEEE float) |

## Typical Response Message, Display Format:

<SOH> I609TT TT c.ccccc <ETX>

## Typical Response Message, Computer Format:

<SOH>i609TT000000000TTFFFFFFF...

 $\tt TTFFFFFFFF&\&CCCC<ETX>$ 

| 1. | 000000000 - | Not Used.                                            |
|----|-------------|------------------------------------------------------|
| 2. | TT -        | Tank Number (Decimal, 00 = all)                      |
| 3. | FFFFFFF -   | Thermal Expansion Coefficient (ASCII Hex IEEE float) |
| 4. | ~ & & -     | Data Termination Flag                                |
| 5. | CCCC -      | Message Checksum                                     |

| Function Type:  | Set Tank I      | Linear | Calculated | Full | Volume    | Version      | 1     |
|-----------------|-----------------|--------|------------|------|-----------|--------------|-------|
| Command Format: |                 |        |            |      |           |              |       |
| Set:            |                 |        |            |      | Inquire:  | <u>_</u>     |       |
| Display:        | <soh>S60A</soh> | TTVVVV | JV         |      | Display:  | <soh>I</soh> | 60ATT |
| Computer:       | <soh>s60A</soh> | TTFFFF | FFFF       |      | Computer: | <soh>i</soh> | 60ATT |
|                 |                 |        |            |      |           |              |       |

### Notes:

| 1. | TT -      | Tank | Number | (Decimal | , 00 =  | all) |      |        |
|----|-----------|------|--------|----------|---------|------|------|--------|
| 2. | VVVVVV -  | Full | Height | Volume,  | (Decima | al)  |      |        |
| 3. | FFFFFFF - | Full | Height | Volume,  | (ASCII  | Hex  | IEEE | float) |

## Typical Response Message, Display Format:

<SOH> I60ATT TT P VVVVVV <ETX>

## Typical Response Message, Computer Format:

<SOH>i60ATT000000000TTFFFFFFF

TTFFFFFFF&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used.                                 |
|----|------------|---|-------------------------------------------|
| 2. | TT         | - | Tank Number (Decimal, 00 = all)           |
| 3. | FFFFFFFF   | - | Full height volume (ASCII Hex IEEE float) |
| 4. | &&         | - | Data Termination Flag                     |
| 5. | CCCC       | _ | Message Checksum                          |

| Fur     | nction Type: | Set Tank Low Level Limit         | Version 1       |                   |
|---------|--------------|----------------------------------|-----------------|-------------------|
| Com     | mand Format: |                                  |                 |                   |
|         | <u>Set:</u>  |                                  | <u>Inquire:</u> |                   |
|         | Display:     | <soh>S621TTVVVVV</soh>           | Display:        | <soh>I621TT</soh> |
|         | Computer:    | <soh>s621TTFFFFFFF</soh>         | Computer:       | <soh>i621TT</soh> |
|         |              |                                  |                 |                   |
| Notes:  |              |                                  |                 |                   |
| 1.      | TT -         | Tank Number (Decimal, 00 = all)  |                 |                   |
| 2.      | - VVVVVV     | Low Level Limit, (Decimal)       |                 |                   |
| 3.      | FFFFFFFF -   | Low Level Limit, (ASCII Hex IEEE | float)          |                   |
|         |              |                                  |                 |                   |
| Typical | Response Mes | sage, Display Format:            |                 |                   |

<SOH> I621TT TT VVVVVV <ETX>

## Typical Response Message, Computer Format:

<SOH>i621TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

| 1. | 000000000 - | Not Used.                               |
|----|-------------|-----------------------------------------|
| 2. | TT -        | Tank Number (Decimal, 00 = all)         |
| 3. | FFFFFFF -   | Low Level Limit, (ASCII Hex IEEE float) |
| 4. | - &&        | Data Termination Flag                   |
| 5. | CCCC -      | Message Checksum                        |

| Fu      | nction Type:  | Set Tank High Water I     | evel Limit     | V               | ersion 1          |
|---------|---------------|---------------------------|----------------|-----------------|-------------------|
|         |               |                           |                |                 |                   |
| Com     | mand Format:  |                           |                |                 |                   |
|         | <u>Set:</u>   |                           |                | <u>Inquire:</u> |                   |
|         | Display:      | <soh>S624TTHH.H</soh>     |                | Display:        | <soh>I624TT</soh> |
|         | Computer:     | <soh>s624TTFFFFFFFF</soh> |                | Computer:       | <soh>i624TT</soh> |
|         |               |                           |                |                 |                   |
| Notes:  |               |                           |                |                 |                   |
| 1.      | TT -          | Tank Number (Decimal,     | 00 = all)      |                 |                   |
| 2.      | HH.H -        | High Water Level Limit    | , (Decimal)    |                 |                   |
| 3.      | FFFFFFFF -    | High Water Level Limit    | , (ASCII Hex ] | IEEE float)     |                   |
|         |               |                           |                |                 |                   |
| Typical | Response Mess | sage, Display Format:     |                |                 |                   |

<SOH> I624TT TT HH.H <ETX>

#### Typical Response Message, Computer Format:

<SOH>i624TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

### Notes:

1. 000000000 - Not Used.
 2. TT - Tank Number (Decimal, 00 = all)
 3. FFFFFFF - High Water Level Limit, (ASCII Hex IEEE float)
 4. && - Data Termination Flag
 5. CCCC - Message Checksum

| Fu                                                                    | nction Type: | Set Tank Max Volum      | ne Limit        | I               | Version 1         |
|-----------------------------------------------------------------------|--------------|-------------------------|-----------------|-----------------|-------------------|
| -                                                                     |              |                         |                 |                 |                   |
| Com                                                                   | mand Format: |                         |                 |                 |                   |
|                                                                       | <u>Set:</u>  |                         |                 | <u>Inquire:</u> |                   |
|                                                                       | Display:     | <soh>S628TTVVVVVV</soh> |                 | Display:        | <soh>I628TT</soh> |
|                                                                       | Computer:    | <soh>s628TTFFFFFF</soh> | ΓF              | Computer:       | <soh>i628TT</soh> |
|                                                                       |              |                         |                 |                 |                   |
| Notes:                                                                |              |                         |                 |                 |                   |
| 1.                                                                    | TT -         | Tank Number (Decin      | nal, 00 = all)  |                 |                   |
| 2.                                                                    | - VVVVVV     | Max Volume Limit,       | (Decimal)       |                 |                   |
| 3.                                                                    | FFFFFFF -    | Max Volume Limit,       | (ASCII Hex IEEE | float)          |                   |
|                                                                       |              |                         |                 |                 |                   |
| Typical                                                               | Response Mes | sage, Display Forma     | it:             |                 |                   |
| <soi< th=""><th>H&gt;</th><th></th><th></th><th></th><th></th></soi<> | H>           |                         |                 |                 |                   |
| I628                                                                  | ЗТТ          |                         |                 |                 |                   |
| TT V                                                                  | VVVVV        |                         |                 |                 |                   |

## Typical Response Message, Computer Format:

<SOH>i628TT000000000TTFFFFFFF... TTFFFFFF&&CCCC<ETX>

### Notes:

< ETX >

| 1. | 0000000000 | - | Not Used.                                 |
|----|------------|---|-------------------------------------------|
| 2. | TT         | - | Tank Number (Decimal, 00 = all)           |
| 3. | FFFFFFFF   | - | Max Product Limit, (ASCII Hex IEEE float) |
| 4. | & &        | - | Data Termination Flag                     |
| 5. | CCCC       | _ | Message Checksum                          |

| Function Type:  | Set Tank Overfill    | Level Limit | Version 1       |                   |
|-----------------|----------------------|-------------|-----------------|-------------------|
| Command Format: |                      |             |                 |                   |
| <u>Set:</u>     |                      |             | <u>Inquire:</u> |                   |
| Display:        | <soh>S638TTDDD</soh> |             | Display:        | <soh>I638TT</soh> |
| Computer:       | <soh>s638TTDDD</soh> |             | Computer:       | <soh>i638TT</soh> |
|                 |                      |             |                 |                   |
| Notes:          |                      |             |                 |                   |

| 1. | TT -  | Tank Numbe | r (Decimal, | 00 = all | )       |
|----|-------|------------|-------------|----------|---------|
| 2. | DDD - | Overfill L | evel Limit, | (Decimal | 0-100응) |

## Typical Response Message, Display Format:

<SOH> I638TT TT DDD <ETX>

## Typical Response Message, Computer Format:

<SOH>i638TT000000000TTDDD...

TTDDD&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used                                |
|----|------------|---|-----------------------------------------|
| 2. | ТТ         | - | Tank Number (Decimal, 00 = all)         |
| 3. | DDD        | - | Overfill Level Limit percent, (DECIMAL) |
| 4. | ۵.۵۵       | - | Data Termination Flag                   |
| 5. | CCCC       | - | Message Checksum                        |

| Function Type:                          | Set Communication Port Data  | Version 1                   |  |  |  |  |
|-----------------------------------------|------------------------------|-----------------------------|--|--|--|--|
| Command Format:                         |                              |                             |  |  |  |  |
| Set:                                    |                              | Inquire:                    |  |  |  |  |
| Display:                                | <soh>S881CCBBBBBPSDTAA</soh> | Display: <soh>I881CC</soh>  |  |  |  |  |
| Computer:                               | <soh>s881CCBBBBBPSDTAA</soh> | Computer: <soh>i881CC</soh> |  |  |  |  |
|                                         |                              |                             |  |  |  |  |
| pical Response Message, Display Format: |                              |                             |  |  |  |  |

# Туј

<SOH> I881CC CC BBBBB P S D T AA <ETX>

## Typical Response Message, Computer Format:

<SOH>i881CC000000000CCBBBBBPSD0AA&&CCCC<ETX>

| 1.  | 0000000000 | - | Not Used                                       |
|-----|------------|---|------------------------------------------------|
| 2.  | CC         | - | Communication Port Number (1)                  |
| 3.  | BBBBB      | - | Baud Rate (Decimal)                            |
| 4.  | P          | - | Parity (Decimal; 0=None, 1 or 2)               |
| 5.  | S          | - | Stop Bit (Decimal; 1 or 2)                     |
| 6.  | D          | - | Data Bit (Decimal; 7 or 8)                     |
| 7.  | 0          | - | Not Used                                       |
| 8.  | AA         | - | Number of Rings before Answer (Decimal, 0 - 9) |
| 9.  | ۵.۵        | - | Data Termination Flag                          |
| 10. | CCCC       | - | Message Checksum                               |

| Function Type:  | Initialize Communicati | on Port Data | ſ               | Version 1         |
|-----------------|------------------------|--------------|-----------------|-------------------|
| Command Format: |                        |              |                 |                   |
| Set:            |                        |              | <u>Inquire:</u> |                   |
| Display:        | <soh>S882CC149</soh>   |              | Display:        | <soh>1882CC</soh> |
| Computer:       | <soh>\$882CC149</soh>  |              | Computer:       | <soh>i882CC</soh> |

### Notes:

1. 149 - This verification code must be sent to confirm the command

#### Typical Response Message, Display Format:

<SOH> I882CC CC BBBBB P S D T AA <ETX>

## Typical Response Message, Computer Format:

<SOH>i882CC000000000CCBBBBBPSD0AA&&CCCC<ETX>

| 1.  | 00000000000 | - | Not Used.                               |
|-----|-------------|---|-----------------------------------------|
| 2.  | CC          | - | Communication Port Number (1)           |
| 3.  | BBBBB       | - | Baud Rate (Decimal)                     |
| 4.  | P           | - | Parity (Decimal; 0= None, 1 or 2)       |
| 5.  | S           | - | Stop Bit (Decimal; 1 or 2)              |
| 6.  | D           | - | Data Bit (Decimal; 7 or 8)              |
| 7.  | 0           | - | Not Used                                |
| 8.  | AA          | - | Number of Rings before Answer (Decimal) |
| 9.  | & &         | - | Data Termination Flag                   |
| 10. | CCCC        | - | Message Checksum                        |

|                       | 000                               |                 |                   |
|-----------------------|-----------------------------------|-----------------|-------------------|
| Function Type:        | Set Serial Communication Language | e 7             | Version 1         |
| Command Format:       |                                   |                 |                   |
| <u>Set:</u>           |                                   | <u>Inquire:</u> |                   |
| Display:              | <soh>S88300LL</soh>               | Display:        | <soh>188300</soh> |
| Computer:             | <soh>s88300LL</soh>               | Computer:       | <soh>188300</soh> |
| Typical Response Mes  | sage, Display Format:             |                 |                   |
| <soh></soh>           |                                   |                 |                   |
| I88300                |                                   |                 |                   |
| LL<br>ZETY S          |                                   |                 |                   |
| <eix></eix>           |                                   |                 |                   |
|                       |                                   |                 |                   |
| Typical Response Mes  | <pre>sage, Computer Format:</pre> |                 |                   |
| <soh>1883000000</soh> | 00000LL&&CCCC <etx></etx>         |                 |                   |
|                       |                                   |                 |                   |
| Notes:                |                                   |                 |                   |
| 1. 000000000          | - Not Used                        |                 |                   |
| 3. LL                 | - System Language:                |                 |                   |
|                       | 1 = English                       |                 |                   |
|                       | 2 = French                        |                 |                   |
|                       | 3 = Spanish                       |                 |                   |
|                       | 4 = Not Used                      |                 |                   |
|                       | 5 = Portuguese                    |                 |                   |

- 6 = Not Used 7 = Not Used
  - 8 = Not Used
  - 9 = Not Used
    - 10 = Not Used
  - 11 = Not Used
    - 12 = Not Used
- 4. && Data Termination Flag
- 5. CCCC Message Checksum

| Function Type:        | Set Serial Handshaking | V         | ersion 1          |
|-----------------------|------------------------|-----------|-------------------|
|                       |                        |           |                   |
| Command Format:       |                        |           |                   |
| <u>Set:</u>           |                        | Inquire:  |                   |
| Display:              | <soh>S88400f</soh>     | Display:  | <soh>188400</soh> |
| Computer:             | <soh>\$88400f</soh>    | Computer: | <soh>188400</soh> |
|                       |                        |           |                   |
| Typical Response Mes  | sage, Display Format:  |           |                   |
| <soh></soh>           |                        |           |                   |
| I88400                |                        |           |                   |
| f                     |                        |           |                   |
| <etx></etx>           |                        |           |                   |
|                       |                        |           |                   |
| Typical Response Mes  | sage, Computer Format: |           |                   |
| <soh>1884000000</soh> | 00000fccCCC < ETTY >   |           |                   |

| 1. | 0000000000 - Not Used      |
|----|----------------------------|
| 2. | f - Handshaking method:    |
|    | 0 = Disabled               |
|    | 1 = Hardware               |
|    | 2 = XON/XOFF               |
| 3. | && - Data Termination Flag |
| 4. | CCCC - Message Checksum    |
|    |                            |

Function Type: System Revision Level Report Version 1

## Command Format:

Display: <SOH>190200 Computer: <SOH>i90200

### Typical Response Message, Display Format:

```
<SOH>
I90200
SOFTWARE# 349771-vvv-rrr A B
CREATED - YY.MM.DD.HH.mm
<ETX>
```

## Typical Response Message, Computer Format:

<SOH>i9020000000000000000SOFTWARE# 349771-vvv-rrrCREATED - YY.MM.DD.HH.mm&&CCCC<ETX>

| 1.   | 00000000000  | - | Not Used                                    |
|------|--------------|---|---------------------------------------------|
| 2.   | vvv          | - | Software version number (ASCII text string) |
| 3.   | rrr          | - | Software revision level (ASCII text string) |
| 4.YY | .MM.DD.HH.mm | - | Date and time of software creation          |
| 5.   | &&           | - | Data Termination Flag                       |
| 6.   | CCCC         | - | Message Checksum                            |
| 7.   | A            | = | 1 - Alarm Package option installed          |
| 8.   | В            | = | 2 - Serial Package option installed         |

| Function Type:                                                                    | Probe Type and Serial Number              | Version 1 |
|-----------------------------------------------------------------------------------|-------------------------------------------|-----------|
| Command Format:                                                                   |                                           |           |
| Display:                                                                          | <soh>IA01TT</soh>                         |           |
| Computer:                                                                         | <soh>iA01TT</soh>                         |           |
| Typical Response Mes<br><soh><br/>IA01TT<br/>TT PP KKKK LLL<br/><etx></etx></soh> | sage, Display Format:<br>L.LL SSSSSS cccc |           |
| Notes:                                                                            |                                           |           |
| 1. TT                                                                             | - Tank Number (Decimal, 00 = all)         |           |
| 2. PP                                                                             | - Probe Type: - MAG1                      |           |
| 3. LLLL.LL                                                                        | - Probe Length (Decimal)                  |           |
| 4. SSSSSS                                                                         | - Probe Serial Number (Decimal)           |           |
| 5. cccc                                                                           | - Probe Date Code (Hex)                   |           |

## Typical Response Message, Computer Format:

<SOH>iA01TT00000000TT0PPKKKKFFFFFFFFSSSSSScccc...

TT0PPKKKKFFFFFFFFSSSSSScccc&&CCCC<ETX>

| 1.  | 0000000000 | - | Not Used.                           |
|-----|------------|---|-------------------------------------|
| 2.  | ТТ         | - | Tank Number (Decimal, 00 = all)     |
| 3.  | 0          | - | Not used                            |
| 4.  | PP         | - | Probe Type: 03 = MAG1               |
| 5.  | KKKK       | - | Circuit Code (Hex)                  |
| 6.  | FFFFFFFF   | - | Probe Length (ASCII Hex IEEE float) |
| 7.  | SSSSSS     | - | Probe Serial Number (Decimal)       |
| 8.  | CCCC       | - | Probe Date Code (Hex)               |
| 9.  | &&         | - | Data Termination Flag               |
| 10. | CCCC       | - | Message Checksum                    |

Function Type: Probe Factory Dry Calibration Values Version 1 Command Format: Display: <SOH>IA02TT Computer: <SOH>iA02TT Typical Response Message, Display Format: <SOH> IA02TT TT PP CCC.CCCC < ETX >Notes: 1. TT - Tank Number (Decimal, 00 = all) 2. PP - Probe Type: 03 = MAG1 3. CCC.CCCC - Probe Data (Decimal) Typical Response Message, Computer Format: <SOH>iA02TT000000000TT0PPNNFFFFFFF... TTOPPNNFFFFFFF...&&CCCC<ETX> Notes: 0000000000 - Not Used. 1. 2. TT - Tank Number (Decimal, 00 = all) 3. 0 - Not used PP - Probe Type: 03 = MAG1 4. NN - Number of eight character Data Fields to follow (Hex) 5. 6. FFFFFFFF - Calibration Value (ASCII Hex IEEE float) 7. && - Data Termination Flag

8. CCCC - Message Checksum

```
Function Type: Probe Last Sample Buffers
                                                                Version 1
    Command Format:
          Display: <SOH>IA10TT
          Computer: <SOH>iA10TT
Typical Response Message, Display Format:
    <SOH>
    IA10TT
    TT PP nnnnn
    SSS.SSS SSS.SSS SSS.SSS SSS.SSS SSS.SSS SSS.SSS SSS.SSS
    SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS
    SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS SSSS.SSS
    SSSS.SSS SSSS.SSS
    <ETX>
Notes:
    1.
                TT - Tank Number (Decimal, 00 = all)
    2.
                PP - Probe Type:03 - MAG1
    3.
             nnnnn - Sample Number (Decimal)
    4.
          ssss.sss - Probe Data (Decimal)
Typical Response Message, Computer Format:
    <SOH>iA10TT000000000TT0PPSSSSNNFFFFFFF...
```

TT0PPSSSSNNFFFFFFF...&&CCCC<ETX>

| 1. | 0000000000 | - | Not Used                                              |
|----|------------|---|-------------------------------------------------------|
| 2. | TT         | - | Tank Number (Decimal, 00 = all)                       |
| 3. | 0          | - | Not used                                              |
| 4. | PP         | - | Probe Type: 03 - MAG1                                 |
| 5. | SSSS       | - | Sample Number (Hex)                                   |
| 6. | NN         | - | Number of eight character Data Fields to follow (Hex) |
| 7. | FFFFFFFF   | - | Probe Data (ASCII Hex IEEE float)                     |
| 8. | &&         | - | Data Termination Flag                                 |
| 9. | CCCC       | - | Message Checksum                                      |

| Fu              | nction Typ  | pe: Prob        | e Fast Av | erage Buf | fers     |          | Vers     | sion 1   |  |
|-----------------|-------------|-----------------|-----------|-----------|----------|----------|----------|----------|--|
|                 |             |                 |           |           |          |          |          |          |  |
| Command Format: |             |                 |           |           |          |          |          |          |  |
|                 |             |                 |           |           |          |          |          |          |  |
|                 | Compute     | er: <soh></soh> | iA11TT    |           |          |          |          |          |  |
|                 |             |                 |           |           |          |          |          |          |  |
| Typical         | Response    | Message,        | Display F | ormat:    |          |          |          |          |  |
|                 | <soh></soh> |                 |           |           |          |          |          |          |  |
|                 | IA11TT      |                 |           |           |          |          |          |          |  |
|                 | TT PP nnn   | nn              |           |           |          |          |          |          |  |
|                 | SSSS.SSS    | SSSS.SSS        | SSSS.SSS  | SSSS.SSS  | SSSS.SSS | SSSS.SSS | SSSS.SSS | ssss.sss |  |
|                 | SSSS.SSS    | SSSS.SSS        | SSSS.SSS  | SSSS.SSS  | SSSS.SSS | SSSS.SSS | SSSS.SSS | SSSS.SSS |  |
|                 | SSSS.SSS    | SSSS.SSS        | SSSS.SSS  | SSSS.SSS  | SSSS.SSS | SSSS.SSS | SSSS.SSS | SSSS.SSS |  |
|                 | SSSS.SSS    | SSSS.SSS        |           |           |          |          |          |          |  |
|                 | <etx></etx> |                 |           |           |          |          |          |          |  |
|                 |             |                 |           |           |          |          |          |          |  |
| Notes:          |             |                 |           |           |          |          |          |          |  |

| 1. | TT -       | Tank Number (Decimal, 00 = all) |
|----|------------|---------------------------------|
| 2. | PP -       | Probe Type: 03 - MAG1           |
| 3. | nnnnn -    | Sample Number (Decimal)         |
| 4. | SSSS.SSS - | Probe Data (Decimal)            |

## Typical Response Message, Computer Format:

```
<SOH>iA11TT00000000TT0PPSSSSNNFFFFFFF...
TT0PPSSSSNNFFFFFFF...&&CCCC<ETX>
```

| 1. | 00000000000 | - | Not Used                                              |
|----|-------------|---|-------------------------------------------------------|
| 2. | TT          | - | Tank Number (Decimal, 00 = all)                       |
| 3. | 0           | - | Not used                                              |
| 4. | PP          | - | Probe Type: 03 - MAG1                                 |
| 5. | SSSS        | - | Number of Samples (Hex)                               |
| 6. | NN          | - | Number of eight character Data Fields to follow (Hex) |
| 7. | FFFFFFFF    | - | Probe Data (ASCII Hex IEEE float)                     |
| 8. | &&          | - | Data Termination Flag                                 |
| 9. | CCCC        | - | Message Checksum                                      |

|      | Function                   | n Type:  | : Probe Standard Average Buffers |            |          |          |          |          |  |  |
|------|----------------------------|----------|----------------------------------|------------|----------|----------|----------|----------|--|--|
|      | Command 1                  | Format:  |                                  |            |          |          |          |          |  |  |
|      | Display: <soh>IA12TT</soh> |          |                                  |            |          |          |          |          |  |  |
|      | Cor                        | mputer:  | <soh>iA127</soh>                 | ΓT         |          |          |          |          |  |  |
|      |                            |          |                                  |            |          |          |          |          |  |  |
| Турі | .cal Respo                 | nse Mess | age, Displ                       | lay Format | ::       |          |          |          |  |  |
|      | <soh></soh>                |          |                                  |            |          |          |          |          |  |  |
|      | IA12TT                     |          |                                  |            |          |          |          |          |  |  |
|      | TT PP nnnr                 | nn       |                                  |            |          |          |          |          |  |  |
|      | ssss.sss                   | ssss.sss | SSSS.SSS                         | SSSS.SSS   | SSSS.SSS | SSSS.SSS | SSSS.SSS | ssss.sss |  |  |
|      | SSSS.SSS                   | ssss.sss | SSSS.SSS                         | SSSS.SSS   | SSSS.SSS | SSSS.SSS | SSSS.SSS | SSSS.SSS |  |  |
|      | SSSS.SSS                   | SSSS.SSS | SSSS.SSS                         | SSSS.SSS   | SSSS.SSS | SSSS.SSS | SSSS.SSS | SSSS.SSS |  |  |
|      | ssss.sss                   | ssss.sss |                                  |            |          |          |          |          |  |  |
|      | <etx></etx>                |          |                                  |            |          |          |          |          |  |  |
|      |                            |          |                                  |            |          |          |          |          |  |  |

## Notes:

| 1. | TT       | - | Tank Number (Decimal, 00 = all) |
|----|----------|---|---------------------------------|
| 2. | PP       | - | Probe Type: 03 - MAG1           |
| 3. | nnnnn    | - | Sample Number (Decimal)         |
| 4. | SSSS.SSS | - | Probe Data (Decimal)            |

## Typical Response Message, Computer Format:

```
<SOH>iA12TT00000000TT0PPSSSSNNFFFFFFF...
TT0PPSSSSNNFFFFFFF...&&CCCC<ETX>
```

| 1. | 00000000000 | - | Not Used                                              |
|----|-------------|---|-------------------------------------------------------|
| 2. | TT          | - | Tank Number (Decimal, 00 = all)                       |
| 3. | 0           | - | Not used                                              |
| 4. | PP          | - | Probe Type: 03 - MAG1                                 |
| 5. | SSSS        | - | Number of Samples (Hex)                               |
| 6. | NN          | - | Number of eight character Data Fields to follow (Hex) |
| 7. | FFFFFFFF    | - | Probe Data (ASCII Hex IEEE float)                     |
| 8. | &&          | - | Data Termination Flag                                 |
| 9. | CCCC        | - | Message Checksum                                      |

# Troubleshooting

This section contains information to help diagnose system problems.

- Probe troubleshooting
- CPU/Power board replacement
- System specifications
- System compatible probes

# **Dual-Function Front Panel Keys (consoles w/Keypads Only)**

Two of the six front panel keys have dual functions [Figure 21].



### Figure 21. Dual-Function Keys

Pressing the Enter key down for an extended period (longer than 2 seconds) will change the system language to the next available language queued in software. Repeat this procedure until the desired language is displayed.

Pressing the Back key down for at least 2 seconds will change the system setup units Repeat this procedure until the desired units are displayed.

A short beep from the console beeper will inform the operator that these keys have been held in long enough to select the alternate function. When the operator is ready to return to the originally programmed language and/or units, switch the console power off and then back on. The system will perform a warm boot and return to the originally programmed language and units.

# **Probe Troubleshooting**

## **CONSOLES W/O DISPLAY**

Probe troubleshooting can be performed using the appropriate RS-232 serial commands (see appropriate section in this manual).

## **CONSOLES W/DISPLAY**

The Diagnostic Menu is accessed from the front panel of the console. From the Top Level menu press the Select key until the display reads **DIAGNOSTICS**, then follow the key presses shown in Figure 22. Figure 23 contains an general explanation of the diagnostic displays.



Figure 22. Diagnostic Menu - Overview



Figure 23. Diagnostic Menu - Explanation

## **Probe Diagnostic Report**

The Diagnostic Report example below is a printout of probe information, for all tanks. The probe functions are discussed in Figure 23.

## DIAGNOSTICS

SOFTWARE VERSION 349771-001-A

| TANK           | : | 1      | 2      | 3      |
|----------------|---|--------|--------|--------|
| PROBE TYPE     | : | GLB8   | GLB8   | GLB8   |
| SERIAL NUMBER  | : | 123001 | 123002 | 123003 |
| PROBE ID       | : | D021   | D021   | D021   |
| PROBE LENGTH   | : | 96.0   | 96.0   | 96.0   |
| GRADIENT       | : | 350.00 | 350.00 | 350.00 |
| NUMBER SAMPLES | : | 20     | 20     | 20     |
| SAMPLES READ   | : | xxxxxx | xxxxxx | xxxxxx |
| SAMPLES USED   | : | xxxxxx | xxxxxx | xxxxxx |
| COUNTS 00      | : | xxxxx  | xxxxx  | XXXXX  |
| 01             | : | xxxxx  | xxxxx  | XXXXX  |
| 02             | : | xxxxx  | XXXXX  | XXXXX  |
| 03             | : | xxxxx  | XXXXX  | XXXXX  |
| 04             | : | XXXXX  | XXXXX  | XXXXX  |
| 05             | : | xxxxx  | XXXXX  | XXXXX  |
| 06             | : | xxxxx  | XXXXX  | XXXXX  |
| 07             | : | XXXXX  | XXXXX  | XXXXX  |
| 08             | : | XXXXX  | XXXXX  | XXXXX  |
| 09             | : | XXXXX  | XXXXX  | XXXXX  |
| 10             | : | XXXXX  | XXXXX  | XXXXX  |
| 11             | : | XXXXX  | XXXXX  | XXXXX  |
| 12             | : | XXXXX  | XXXXX  | XXXXX  |
| 13             | : | XXXXX  | XXXXX  | XXXXX  |
| 14             | : | XXXXX  | XXXXX  | XXXXX  |
| 14             | : | XXXXX  | XXXXX  | XXXXX  |
| 15             | : | XXXXX  | XXXXX  | XXXXX  |
| 16             | : | XXXXX  | XXXXX  | XXXXX  |
| 17             | : | XXXXX  | XXXXX  | XXXXX  |
| 18             | : | xxxxx  | xxxxx  | XXXXX  |

# **Replacing the CPU Board**

The CPU board in the console must be replaced when:

- A system self-test failure occurs during a warm or cold boot, or
- The display (on certain models) contains garbled messages and/or the voltage between the GND and 8V test points on the back of the CPU board is within 7 9 Vdc; or,
- The voltage between the GND and 5V test points [Figure 24] on the back of the CPU board is not within 4.75 5.25 Vdc.



1. Turn Off power to the system.



Figure 24. CPU Board Voltage Test Points (Keypad/Display version shown)

- 2. Attach the anti-static strap to your wrist and to a good ground.
- 3. Disconnect the CPU cable from the Power Supply board.
- 4. The CPU board snaps securely into place in the door of the console without the use of screws. There are two tabs on the top of the board that fit into two slots in the top edge of the door. The bottom of the CPU board snaps in place between two pairs of detents protruding from the bottom edge of the door. The CPU board is removed by inserting a straight-slot screwdriver into one of the two indents on the bottom of the board and then gently prying against the door until the board clears the upper detents, then rotating the board up slightly and toward you to clear the top tabs from the slots in the door.
- 5. Replace the CPU board reversing the above steps.
- 6. Follow the cold boot instructions beginning on page 20.

# **PROM Chip Replacement (Software Upgrade)**

The PROM chip is replaced when a software upgrade is installed. This procedure requires that you perform a RAM clear.



1. If possible, record the current setup information. Turn off power to the system.

- 2. Open the front door of the console. The CPU board is installed in the door.
- 3. Attach anti-static strap to your wrist and to a good ground.
- 4. Disconnect the CPU board cable from the Power Supply board. Remove the CPU board following the instructions in "Replacing the CPU Board" on page 61.
- 5. Locate the PROM chip on the board [Figure 24].
- 6. Remove the PROM chip following instructions in Figure 25.
- 7. Replace the PROM chip following instructions in Figure 26.
- 8. Replace the CPU board in the front door of the TLS-50. Connect the CPU board cable to J1 on the Power Supply board.
- 9. Follow the cold boot instructions for your console type beginning on page 20.



Figure 25. Removing PROM Chip



Figure 26. Replacing PROM Chip (Keypad/Display version shown)

# **Replacing the Power Supply Board**

The Power Supply board must be replaced when:

- Probe data is not being processed, or
- The voltage between the GND and 8V test points [Figure 24] on the back of the CPU board is less than 7 Vdc.
- 1. Turn Off power to the system.
- 2. Disconnect the CPU cable from the Power Supply board.
- 3. Tag and disconnect probe, power, and overfill alarm relay wiring to the Power Supply board.
- 4. The Power Supply board is secured by two T-15 Torx screws in the top of the board. For consoles with the com option (see Table 1 on page 1), the two screw locks which go through the bottom of the console into the DB-9 connector must also be removed before you can lift out the board.

After removing the Torx screws (and screw locks), slowly lift up on the board until the lower tabs on the board clear the slots in the bottom of the console, then continue to lift the board out.

- 5. Replace the board by reversing the above steps.
- 6. Turn on power to the system. The system will perform a warm boot procedure [page 21] and the display will return to the top level status screen. You do not have to reprogram the console after replacing the Power Supply board.



# **Console Specifications**

## **PHYSICAL SPECIFICATIONS**

- Width (door closed): 7.6", open 9.6") Depth (door closed 2.6", open 9"))
- Height: 6.7" Weight: 3.5 lbs.
- Two PC boards in console: CPU (in door) and Power Supply (in unit)

## **ENVIRONMENTAL SPECIFICATIONS**

• Console storage and operation: indoor, climate controlled.

## **ELECTRICAL SPECIFICATIONS**

- Console operating voltage: 120/240 Vac, 2 A max.
- The Power Supply board fuses F1 and F2 are <u>NOT</u> field replaceable The rating for both fuses is 2 A, Type T [Time Lag].

## SIGNAL INPUT SPECIFICATIONS

- Up to 6 probes monitored with TLS-50, or 3 probes monitored with TLS-50C
- Probe data: 0.15 A at 12 volts

## SIGNAL OUTPUT SPECIFICATIONS

• One dry contact Relay Output: 120 Vac, 2 A

## FRONT PANEL USER INTERFACE (CONSOLES W/DISPLAY)

- Two line, graphic LCD display
- Visible annunciator (bi-color LED)
  - Green all functions normal
  - Flashing red alarm active
- Push keys

Select

Enter

Print (optional)

Back

Silence

Tank

• Audible annunciator: internal beeper
## **Probe Circuit Codes**

Table 2 lists the probes that can be used with various TLS-50 Console Form Nos. Probe Form Nos. 8990 are only compatible with Console Form Nos. 846910-XXX.

| Circuit<br>Code | Probe Form | Probe<br>Type | Probe Description    | Water<br>Float Type | Temperature<br>Measurement | No. of<br>Floats |
|-----------------|------------|---------------|----------------------|---------------------|----------------------------|------------------|
| D021            | 846891-199 | GLB8          |                      | Gasoline            | Yes                        | 2                |
| D021            | 846891-299 | GLB8          |                      | Diesel              | Yes                        | 2                |
| D021            | 846891-399 | GLB8          |                      | Light Oil           | Yes                        | 2                |
| D022            | 846891-499 | GLB9          |                      | Gasoline            | No                         | 2                |
| D022            | 846891-599 | GLB9          |                      | Diesel              | No                         | 2                |
| D022            | 846891-699 | GLB9          |                      | Light Oil           | No                         | 2                |
| D023            | 846891-799 | GLB10         |                      | None                | Yes                        | 1                |
| D024            | 846891-899 | GLB11         |                      | None                | No                         | 1                |
| D026            | 899021-2XX | Mag Plus      | 0.2 GPH - Gasoline   |                     | Yes                        | 2                |
| D026            | 899031-2XX | Mag Plus      | 0.2 GPH - Diesel     |                     | Yes                        | 2                |
| D027            | 899021-3XX | Mag Plus      | Inv. Only - Gasoline |                     | Yes                        | 2                |
| D027            | 899031-3XX | Mag Plus      | Inv. Only - Diesel   |                     | Yes                        | 2                |

| Table | 2 -      | Probe | Circuit | Codes |
|-------|----------|-------|---------|-------|
| lable | <b>Z</b> | LIODE | Circuit | Coues |

All 8990 probes are Nepsi approved. The standard configuration for an 8990 probe is stainless steel with a 5-foot (1.524 m) cable.

## Appendix A: TLS-50 and TLS-50C Safety Instructions

- 1. Refer to Veeder-Root Descriptive System Document 331940-003 for system installation requirements. This drawing can be found on the Veeder-Root Tech Docs CD-ROM shipped with your console.
- 2. Refer to the site preparation procedures in this manual for general instructions on safe installation, use, and replacement.
- 3. The TLS-50 and TLS-50C systems do not require periodic maintenance or calibration.
- 4. The TLS-50 and TLS-50C systems are serviceable. If a failure occurs, the unit should be repaired in accordance with the requirements in the Troubleshooting section of this manual. Note: There are no replaceable components within the encapsulated protective circuits. If a protective circuit fails, it must be replaced in its entirety.



